waterlogging tolerance
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 104)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 296 ◽  
pp. 110890
Author(s):  
Ting Zhao ◽  
Xuejun Pan ◽  
Zhengui Ou ◽  
Qin Li ◽  
Wen'e Zhang

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Khadeja Sultana Sathi ◽  
Abdul Awal Chowdhury Masud ◽  
Maliha Rahman Falguni ◽  
Naznin Ahmed ◽  
Khussboo Rahman ◽  
...  

Waterlogging is a common form of abiotic stress that severely impedes global soybean production. Targeting this issue, an experiment was carried out at Sher-e-Bangla Agricultural University during August–November 2019 to screen out the waterlogging tolerance and yield performances of selected soybean genotypes. The experiment was laid out in a completely randomized design (CRD) with three replications consisting of 2 water levels (control and waterlogging) and 12 genotypes (Sohag, BARI Soybean-5, BINAsoybean-1, BINAsoybean-2, BINAsoybean-3, BINAsoybean-5, BINAsoybean-6, SGB-1, SGB-3, SGB-4, SGB-5, and GC-840). On the 15th day after sowing, plants were exposed to waterlogging for 12 days. Waterlogging remarkably declined the growth and yield of all the soybean genotypes compared to control. Reduced plant height, relative water content, above-ground fresh and dry weight, SPAD value, leaf area, number of leaves, branches, pods, seeds pod−1, 100-seed weight, and seed yield plant−1 were observed under waterlogging stress. Conversely, mortality rate and electrolyte leakage were increased under the same condition. The waterlogged plants showed delayed flowering and maturity compared with the control plants. However, among the 12 genotypes, Sohag, BARI Soybean-5, GC-840, BINAsoybean-1, and BINAsoybean-2 showed better waterlogging tolerance. These genotypes showed a greater number of adventitious roots in the base of their stem, which probably helped plants to thrive under waterlogging conditions.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12741
Author(s):  
Ruier Zeng ◽  
Jing Cao ◽  
Xi Li ◽  
Xinyue Wang ◽  
Ying Wang ◽  
...  

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (ΦPS II), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. ΦPS II, Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Pranjali A. Gedam ◽  
Dhananjay V. Shirsat ◽  
Thangasamy Arunachalam ◽  
Sourav Ghosh ◽  
Suresh J. Gawande ◽  
...  

Onion production is severely affected by waterlogging conditions, which are created due to heavy rainfall. Hence, the identification of waterlogging-tolerant onion genotypes is crucial for increasing onion production. In the present study, 100 distinct onion genotypes were screened for waterlogging tolerance under artificial conditions by using the phenotypic approach in the monsoon season of 2017. Based on plant survival and recovery and changes in bulb weight, we identified 19 tolerant, 27 intermediate tolerant, and 54 highly sensitive onion genotypes. The tolerant genotypes exhibited higher plant survival and better recovery and bulb size, whereas sensitive genotypes exhibited higher plant mortality, poor recovery, and small bulb size under waterlogging conditions. Furthermore, a subset of 12 contrasting genotypes was selected for field trials during monsoon seasons 2018 and 2019. Results revealed that considerable variation in the morphological, physiological, and yield characteristics were observed across the genotypes under stress conditions. Waterlogging-tolerant genotypes, namely, Acc. 1666, Acc. 1622, W-355, W-208, KH-M-2, and RGP-5, exhibited higher plant height, leaf number, leaf area, leaf length, chlorophyll content, membrane stability index (MSI), pyruvic acid, antioxidant content, and bulb yield than sensitive genotypes under stress conditions. Furthermore, the principal component analysis biplot revealed a strong association of leaf number, leaf area, chlorophyll content, MSI, and bulb yield with tolerant genotypes under stress conditions. The study indicates that the waterlogging-tolerant onion genotypes with promising stress-adaptive traits can be used in plant breeding programs for developing waterlogging-tolerant onion varieties.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Wenqiang Li ◽  
Ghana S. Challa ◽  
Ajay Gupta ◽  
Liping Gu ◽  
Yajun Wu ◽  
...  

Waterlogging, causing hypoxia stress and nitrogen depletion in the rhizosphere, has been an increasing threat to wheat production. We developed a wheat–sea wheatgrass (SWG) amphiploid showing superior tolerance to waterlogging and low nitrogen. Validated in deoxygenated agar medium for three weeks, hypoxia stress reduced the dry matter of the wheat parent by 40% but had little effect on the growth of the amphiploid. To understand the underlying mechanisms, we comparatively analyzed the wheat–SWG amphiploid and its wheat parent grown in aerated and hypoxic solutions for physiological traits and root transcriptomes. Compared with its wheat parent, the amphiploid showed less magnitude in forming root porosity and barrier to radial oxygen loss, two important mechanisms for internal O2 movement to the apex, and downregulation of genes for ethylene, lignin, and reactive oxygen species. In another aspect, however, hypoxia stress upregulated the nitrate assimilation/reduction pathway in amphiploid and induced accumulation of nitric oxide, a byproduct of nitrate reduction, in its root tips, and the amphiploid maintained much higher metabolic activity in its root system compared with its wheat parent. Taken together, our research suggested that enhanced nitrate assimilation and reduction and accumulation of nitric oxide play important roles in the SWG-derived waterlogging tolerance.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2487
Author(s):  
Nguyen Thi Mui ◽  
Meixue Zhou ◽  
David Parsons ◽  
Rowan William Smith

The formation of aerenchyma in adventitious roots is one of the most crucial adaptive traits for waterlogging tolerance in plants. Pasture grasses, like other crops, can be affected by waterlogging, and there is scope to improve tolerance through breeding. In this study, two summer-active cocksfoot (Dactylis glomerata L.) cultivars, Lazuly and Porto, and two summer-active tall fescue (Lolium arundinaceum Schreb., syn. Festuca arundinacea Schreb.) cultivars, Hummer and Quantum II MaxP, were selected to investigate the effects of waterlogging on root growth and morphological change. Cultivars were subjected to four periods of waterlogging treatments (7, 14, 21 and 28 days), while comparable plants were kept under free drained control conditions. The experiment was arranged as a split–split plot design, with waterlogging treatments (waterlogged, control) considered as main plots, time periods (days of waterlogging) as subplots and cultivars as sub-subplots. Plants began to show signs of waterlogging stress 14–21 days after the onset of waterlogging treatments. There were no significant differences in shoot biomass between the waterlogged and control plants of any cultivar. However, waterlogging significantly reduced root dry matter in all cultivars, with greater reduction in cocksfoot (56%) than in tall fescue (38%). Waterlogging also led to increased adventitious root and aerenchyma formation in both species. Cocksfoot cultivars showed a greater increase in adventitious roots, while tall fescue cultivars had a greater proportion of aerenchyma. Both cultivars within each species showed similar responses to waterlogging treatments. However, an extended screening program is needed to identify whether there are varietal differences within species, which could be used to discover genes related to aerenchyma or adventitious root formation (waterlogging tolerance) for use in breeding programs.


2021 ◽  
Author(s):  
Dadong Li ◽  
El-Hadji Malick Cisse ◽  
Luyao Guo ◽  
Juan Zhang ◽  
Lingfeng Miao ◽  
...  

Abstract Cleistocalyx operculatus and Syzygium cumini possess a certain waterlogging tolerance. However, the comparable and adaptable strategies to waterlogging stress between these two species on the basis of waterlogging adventitious root (AR) regulation were still unclear. In this study, the plant performances in response to AR regulation based on AR removal and exogenous hormone application were investigated in terms of plant morphology, physiology, photosynthesis, and AR traits. Results showed that C. operculatus possesses stronger waterlogging tolerance than S. cumini based on waterlogging tolerance coefficient, which is mainly due to the higher root biomass, root porosity, and length and activity of ARs, and shorter emergence time of ARs in C. operculatus than in S. cumini. The AR-R treatment increased activity and porosity of primary root, and induce a large amount of up-vertical ARs from the primary root systems in C. operculatus, while similar adaptive morphological changes in roots did not occur in AR-R treated S. cumini. Exogenous ABA application had better effects on alleviating waterlogging damages than exogenous IAA in balancing endogenous hormones (ABA and ZR), promoting ARs development (porosity and activity, and the ratio of cortex area to stele area), improving photosynthesis process and antioxidant system (soluble protein, free proline, and peroxidase). Moreover, under waterlogging conditions, exogenous ABA application induced greater increases in net photosynthesis rate (A), stomatal conductance (gs), chlorophyll b (Chl b), and carotenoid (Caro) in S. cumini than in C. operculatus, which suggested that S. cumini responded more positively and efficiently to exogenous ABA application than C. operculatus under waterlogging conditions. Thus, the findings provided new insights into the waterlogging adaptable strategies in waterlogging tolerant woody species on the basis of ARs, and could provide scientific guidance for the application of these two species during revegetation activities in wetlands.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2586
Author(s):  
Zhi Li ◽  
Danfeng Bai ◽  
Yunpeng Zhong ◽  
Muhammad Abid ◽  
Xiujuan Qi ◽  
...  

Rootstocks from Actinidia valvata are much more tolerant to waterlogging stress than those from Actinidia deliciosa, which are commonly used in kiwifruit production. To date, the tolerance mechanism of A. valvata rootstocks’ adaptation to waterlogging stress has not been well explored. In this study, the responses of KR5 (A. valvata) and ‘Hayward’ (A. deliciosa) to waterlogging stress were compared. Results showed that KR5 plants performed much better than ‘Hayward’ during waterlogging by exhibiting higher net photosynthetic rates in leaves, more rapid formation of adventitious roots at the base of stems, and less severe damage to the main root system. In addition to morphological adaptations, metabolic responses of roots including sufficient sucrose reserves, modulated adjustment of fermentative enzymes, avoidance of excess lactic acid and ethanol accumulation, and promoted accumulation of total amino acids all possibly rendered KR5 plants more tolerant to waterlogging stress compared to ‘Hayward’ plants. Lysine contents of roots under waterlogging stress were increased in ‘Hayward’ and decreased in KR5 compared with their corresponding controls. Overall, our results revealed the morphological and metabolic adaptations of two kiwifruit rootstocks to waterlogging stress, which may be responsible for their genotypic difference in waterlogging tolerance.


Sign in / Sign up

Export Citation Format

Share Document