Existence and uniqueness of the solution, separation for certain second order elliptic differential equation

2000 ◽  
Vol 76 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
A.S. Mohamed
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kordan N. Ospanov

AbstractWe give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solution and its derivatives. Using these estimates, we show the conditions for the compactness of some integral operators associated with the resolvent.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhenhua Hu ◽  
Shuqing Zhou

We first introduce double obstacle systems associated with the second-order quasilinear elliptic differential equationdiv(A(x,∇u))=div f(x,u), whereA(x,∇u),f(x,u)are twon×Nmatrices satisfying certain conditions presented in the context, then investigate the local and global higher integrability of weak solutions to the double obstacle systems, and finally generalize the results of the double obstacle problems to the double obstacle systems.


2001 ◽  
Vol 6 (1) ◽  
pp. 147-155 ◽  
Author(s):  
S. Rutkauskas

The Dirichlet type problem for the weakly related elliptic systems of the second order degenerating at an inner point is discussed. Existence and uniqueness of the solution in the Holder class of the vector‐functions is proved.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Abdallah Ali Badr ◽  
Hanan Salem El-Hoety

A stochastic differential equation, SDE, describes the dynamics of a stochastic process defined on a space-time continuum. This paper reformulates the fractional stochastic integro-differential equation as a SDE. Existence and uniqueness of the solution to this equation is discussed. A numerical method for solving SDEs based on the Monte-Carlo Galerkin method is presented.


Sign in / Sign up

Export Citation Format

Share Document