scholarly journals Supplementary biotin decreases tibial bone weight, density and strength in riboflavin-deficient starter diets for turkey poults

2013 ◽  
Vol 54 (6) ◽  
pp. 801-809 ◽  
Author(s):  
P.M. Hocking ◽  
E. Stevenson ◽  
P.M. Beard
2021 ◽  
Vol 17 (3) ◽  
pp. 1-38
Author(s):  
Ali Bibak ◽  
Charles Carlson ◽  
Karthekeyan Chandrasekaran

Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k .


Author(s):  
Philipp W. Winkler ◽  
Brian M. Godshaw ◽  
Jon Karlsson ◽  
Alan M. J. Getgood ◽  
Volker Musahl

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2063
Author(s):  
Awad A. Shehata ◽  
Shereen Basiouni ◽  
Reinhard Sting ◽  
Valerij Akimkin ◽  
Marc Hoferer ◽  
...  

Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and adenoviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also interconnected factors. However, it is difficult to determine the specific cause of enteric disorders under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative agents of PEMS and challenges in diagnosis and control.


1997 ◽  
Vol 38 (2) ◽  
pp. 167-174
Author(s):  
C. Ekstrand ◽  
B. Algers

Sign in / Sign up

Export Citation Format

Share Document