Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine

2015 ◽  
Vol 188 (1) ◽  
pp. 21-39 ◽  
Author(s):  
A. Abou-Taouk ◽  
B. Farcy ◽  
P. Domingo ◽  
L. Vervisch ◽  
S. Sadasivuni ◽  
...  
Author(s):  
Keisuke Tanaka ◽  
Tomonari Sato ◽  
Nobuyuki Oshima ◽  
Jiun Kim ◽  
Yusuke Takahashi ◽  
...  

Turbulent combustion flows in the partially premixed combustion field of a dry low-emission gas-turbine combustor were investigated numerically by large-eddy simulation with a 2-scalar flamelet model. Partially premixed combustion was modelled with 2-scalar coupling based on the conservative function of the mixture fraction and the level set function of the premixed flame surface; the governing equations were then used to calculate the gas temperature in the combustion field with flamelet data. A new combustion model was introduced by defining a nondimensional equilibrium temperature to permit the calculation of adiabatic flame temperatures in the combustion field. Furthermore, a conventional G-equation was modified to include spatial gradient terms for the adiabatic flame temperature to facilitate smooth propagation of a burnt-state region in a predominantly diffusion flame. The effect of flame curvature was adjusted by means of an arbitrary parameter in the equation. The simulation results were compared with those from an experiment and a conventional model. Qualitative comparisons of the instantaneous flame properties showed a dramatic improvement in the new combustion model. Moreover, the experimental outlet temperature agreed well with that predicted by the new model. The model can therefore reproduce the propagation of a predominantly diffusion flame in partially premixed combustion.


Author(s):  
Ashoke De ◽  
Sumanta Acharya

A thickened-flame (TF) modeling approach is combined with a large eddy simulation (LES) methodology to model premixed combustion, and the accuracy of these model predictions is evaluated by comparing with the piloted premixed stoichiometric methane-air flame data of Chen et al. (1996, “The Detailed Flame Structure of Highly Stretched Turbulent Premixed Methane-Air Flames,” Combust. Flame, 107, pp. 233–244) at a Reynolds number Re=24,000. In the TF model, the flame front is artificially thickened to resolve it on the computational LES grid and the reaction rates are specified using reduced chemistry. The response of the thickened-flame to turbulence is taken care of by incorporating an efficiency function in the governing equations. The efficiency function depends on the characteristics of the local turbulence and on the characteristics of the premixed flame such as laminar flame speed and thickness. Three variants of the TF model are examined: the original thickened-flame model, the power-law flame-wrinkling model, and the dynamically modified TF model. Reasonable agreement is found when comparing predictions with the experimental data and with computations reported using a probability distribution function modeling approach. The results of the TF model are in better agreement with data when compared with the predictions of the G-equation approach.


Author(s):  
M. Staufer ◽  
J. Janicka

Partially premixed flames although common on many technical devices are difficult to model in numerical simulations. In this paper a Large Eddy Simulation of a lean combustor is presented. To account for mixing effects in case of partially premixed combustion, a suitable extension to the well known coherent flame model (CFM) is applied. The turbulent reaction rate of the partially premixed flame is approximated by solving an additional transport equation for the flame surface density which accounts for flame wrinkling effects as well as for the creation and destruction of flame surface due to stretch and strain effects. The variation of stoichiometry in the flame is accounted for by using a suitable presumed PDF methodology. The pdf-model represents finite rate, as well as non-equilibrium chemistry effects in the flame. The model has been validated against experimental data. The results show an overall reasonable agreement with experimental data, both in profile shapes as well as peak values.


Author(s):  
Takuji Nakashima ◽  
Nobuyuki Oshima

To investigate the ability of a numerical prediction method in a practical combustor system, we have conducted a numerical simulation of partially premixed turbulent combustion within a gas-turbine combustor geometry. A combination of Large-Eddy simulation and the 2-scalar flamelet approach are used to simulate unsteady turbulent combustion in modeling turbulent and combustion reaction phenomena and their interactions. With the successful simulation of both the premixed and non-premixed combustion states including the effects of turbulence, the predicted distributions of time-averaged temperature and the O2 mole fraction are found to essentially correspond to the experimental data. In an analysis of the predicted results, the weights of resolved and unresolved phenomena in the numerical prediction are estimated in order to discuss the effects of the turbulent combustion model applied to a practical combustion flow. The analysis determines the effect of turbulence on a Grid Scale that accelerates the premixed combustion reaction, while the modeled effect of turbulence caused by combustion acceleration as shown on a Sub-grid Scale is about twice of the effect as that seen on the Grid Scale.


Sign in / Sign up

Export Citation Format

Share Document