scholarly journals Large Eddy Simulation of Premixed Combustion With a Thickened-Flame Approach

Author(s):  
Ashoke De ◽  
Sumanta Acharya

A thickened-flame (TF) modeling approach is combined with a large eddy simulation (LES) methodology to model premixed combustion, and the accuracy of these model predictions is evaluated by comparing with the piloted premixed stoichiometric methane-air flame data of Chen et al. (1996, “The Detailed Flame Structure of Highly Stretched Turbulent Premixed Methane-Air Flames,” Combust. Flame, 107, pp. 233–244) at a Reynolds number Re=24,000. In the TF model, the flame front is artificially thickened to resolve it on the computational LES grid and the reaction rates are specified using reduced chemistry. The response of the thickened-flame to turbulence is taken care of by incorporating an efficiency function in the governing equations. The efficiency function depends on the characteristics of the local turbulence and on the characteristics of the premixed flame such as laminar flame speed and thickness. Three variants of the TF model are examined: the original thickened-flame model, the power-law flame-wrinkling model, and the dynamically modified TF model. Reasonable agreement is found when comparing predictions with the experimental data and with computations reported using a probability distribution function modeling approach. The results of the TF model are in better agreement with data when compared with the predictions of the G-equation approach.

Author(s):  
Ashoke De ◽  
Sumanta Acharya

A Thickened Flame (TF) modeling approach is combined with a Large Eddy Simulation (LES) methodology to model premixed combustion and the accuracy of these model predictions is evaluated by comparing with the piloted premixed stoichiometric methane-air flame data of Chen et al. [Combust. Flame 107 (1996) 223–226] at a Reynolds number Re = 24,200. In the TF model, the flame front is artificially thickened to resolve it on the computational LES grid. Since the flame front is resolved, the combustion chemistry can be incorporated directly without closure approximations for the reaction rate. The response of the thickened flame to turbulence is taken care of by incorporating an efficiency function in the governing equations. The efficiency function, which is also known as a sub-grid flame wrinkling parameter, is a function of local turbulence and of the premixed flame characteristics, such as laminar flame speed and thickness. Three variants of the TF model are examined: the original Thickened Flame model, the Power-law flame wrinkling model, and the dynamically modified TF model. Reasonable agreement is found when comparing predictions with the experimental data and with computations reported using a probability distribution function (PDF) modeling approach by Lindstedt et al. [Combust. Flame 145 (2006) 495–511] and G-equation approach by Duchamp et al. [Annual Research Briefs, CTR (2000) 105–116].


Author(s):  
Peter A. Strakey ◽  
Gilles Eggenspieler

The development of a dynamic thickened flame (TF) turbulence-chemistry interaction model is presented based on a novel approach to determine the subfilter flame wrinkling efficiency. The basic premise of the TF model is to artificially decrease the reaction rates and increase the species and thermal diffusivities by the same amount, which thickens the flame to a scale that can be resolved on the large eddy simulation (LES) grid while still recovering the laminar flame speed. The TF modeling approach adopted here uses local reaction rates and gradients of product species to thicken the flame to a scale large enough to be resolved by the LES grid. The thickening factor, which is a function of the local grid size and laminar flame thickness, is only applied in the flame region and is commonly referred to as dynamic thickening. Spatial filtering of the velocity field is used to determine the efficiency function by accounting for turbulent kinetic energy between the grid-scale and the thickened flame scale. The TF model was implemented into the commercial computational fluid dynamics code FLUENT. Validation in the approach is conducted by comparing model results to experimental data collected in a laboratory-scale burner. The burner is based on an enclosed scaled-down version of the low swirl injector developed at Lawrence Berkeley National Laboratory. A perfectly premixed lean methane-air flame was studied, as well as the cold-flow characteristics of the combustor. Planar laser induced fluorescence of the hydroxyl molecule was collected for the combusting condition, as well as the velocity field data using particle image velocimetry. Thermal imaging of the quartz liner surface temperature was also conducted to validate the thermal wall boundary conditions applied in the LES calculations.


Author(s):  
Tomoya Murota ◽  
Masaya Ohtsuka

To analyze combustion oscillation in the premixed combustor, a large-eddy simulation program for premixed combustion flow was developed. The subgrid scale (SGS) model of eddy viscosity type for compressible turbulence (Speziale et al., 1988) was adopted to treat the SGS fluxes. The fractal flamelet model, which utilizes the fractal properties of the turbulent premixed flame to obtain the reaction rate, was developed. Premixed combustion without oscillation was analyzed to verify the present method. The computational results showed good accordance with experimental data (Rydén et al., 1993). The combustion oscillation of an “established buzz” type in the premixed combustor (Langhorne, 1988) was also analyzed. The present method succeeded in capturing the oscillation accurately. The detailed mechanism was investigated. The appearance of the non-heat release region, which is generated because the supply of the unburnt gas into the combustion zone stagnates, and its disappearance play an important role.


2015 ◽  
Vol 19 (5) ◽  
pp. 628-656 ◽  
Author(s):  
Ivan Langella ◽  
Nedunchezhian Swaminathan ◽  
Yuan Gao ◽  
Nilanjan Chakraborty

Sign in / Sign up

Export Citation Format

Share Document