combustion regime
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Hugo Quintens ◽  
Prathika Shetty ◽  
Robin D'Ayer ◽  
Camille Strozzi ◽  
Marc Bellenoue

2021 ◽  
Vol 932 ◽  
Author(s):  
Qianghui Xu ◽  
Xiaoye Dai ◽  
Junyu Yang ◽  
Zhiying Liu ◽  
Lin Shi

Non-isothermal reactive transport in complicated porous media is diverse in nature and industrial applications. There are challenges in the modelling of multiple physicochemical processes in multiscale pore structures with various length scales ranging from nanometres to micrometres. This study focuses on coke combustion during in situ crude oil combustion techniques. A micro-continuum model was developed to perform an image-based simulation of coke combustion through a multiscale porous medium. The simulation coupled weakly compressible gas flow, species transport, conjugate heat transfer, heterogeneous coke oxidation kinetics and structural evolution. The unresolved nanoporous coke region was treated as a continuum, for which the random pore model, permeability model and species diffusivity model were integrated as sub-grid models to account for the sub-resolution reactive surface area, Darcy flow and Knudsen diffusion, respectively. A Pe–Da diagram was provided to present five characteristic combustion regimes covering the ignition temperature and air flux in realistic field operations and laboratory measurements. The present model proved to achieve more accurate predictions of the feasible ignition temperature than previous models. Compared with the air flux of $\phi \sim O\textrm{(1) s}{\textrm{m}^\textrm{3}}(\textrm{air})\;{({\textrm{m}^\textrm{2}}\ \textrm{h})^{ - 1}}$ in the field, the increasing air flux in the laboratory transformed the combustion regime from diffusion-limited to convection-limited, which led to an overpredicted burning temperature. Reactive fingering combustion was analysed to understand the potential risks in some experimental measurements. The findings provide a better understanding of coke combustion and can help engineers design sustainable combustion methods. The developed image-based model allows other types of multiscale and nonlinear reactive transport to be simulated.


Author(s):  
Anna Georgievna Knyazeva ◽  
Natalia Valerievna Bukrina

Shock Waves ◽  
2021 ◽  
Author(s):  
P. Wolański

AbstractA very short survey of research conducted in Poland on the development of the rotating detonation engine (RDE) is presented. Initial studies conducted in cooperation with Japanese partners lead to development of a joint patent on RDE. Then, an intensive basic and applied research was started at the Institute of Heat Engineering of the Warsaw University of Technology. One of the first achievements was the demonstration of performance of the rocket engine with an aerospike nozzle utilizing continuously rotating detonation (CRD), and research was directed into development of a small turbofan engine utilizing such a combustion regime. These activities promoted international cooperation and stimulated RDE development not only in Poland but also in other countries. A research directed to measure and calculate flow parameters as well as to analyze the use of liquid fuels was conducted. In the Institute of Aviation in Warsaw, research on the application of the CRD to turbine engines as well as rocket, ramjet, and combined cycle engines was carried out. In the paper, a special emphasis is given to international cooperation in this area with partners from many countries engaged in the development of the pressure gain combustion to propulsion systems.


Author(s):  
Riccardo Malpica Galassi ◽  
Pietro Paolo Ciottoli ◽  
Mauro Valorani ◽  
Hong G. Im

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5548
Author(s):  
Felix Benjamin Keil ◽  
Marvin Amzehnhoff ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

In the present study, flame propagation statistics from turbulent statistically planar premixed flames obtained from simple and detailed chemistry, three-dimensional Direct Numerical Simulations, were evaluated and compared to each other. To this end, a new database was established encompassing five different conditions on the turbulent premixed combustion regime diagram, using nearly identical numerical methods and the same initial and boundary conditions. A detailed discussion of the advantages and limitations of both approaches is provided, including the difference in carbon footprint for establishing the database. It is shown that displacement speed statistics and their interrelation with curvature and tangential strain rate are in very good qualitative and reasonably good quantitative agreement between simple and detailed chemistry Direct Numerical Simulations. Hence, it is concluded that simple chemistry simulations should retain their importance for future combustion research, and the environmental impact of high-performance computing methods should be carefully chosen in relation to the goals to be achieved.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4934
Author(s):  
Eugenio Giacomazzi ◽  
Donato Cecere

The aim of this work is to propose a unified (generalized) closure of the chemical source term in the context of Large Eddy Simulation able to cover all the regimes of turbulent premixed combustion. Turbulence/combustion scale interaction is firstly analyzed: a new perspective to look at commonly accepted combustion diagrams is provided based on the evidence that actual turbulent flames can experience locally several combustion regimes although global non-dimensional numbers would locate such flames in a single specific operating point of the standard combustion diagram. The deliverable is a LES subgrid scale model for turbulent premixed flames named Localized Turbulent Scales Model (LTSM). This is founded on the estimation of the local reacting volume fraction of a computational cell that is related to the local turbulent and laminar flame speeds and to the local flame thickness.


Sign in / Sign up

Export Citation Format

Share Document