Reaction-Diffusion Manifolds (REDIM) Method for Ignition by Hot Gas and Spark Ignition Processes in Counterflow Flame Configurations

Author(s):  
Chunkan Yu ◽  
Ulrich Maas
2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4189-4196
Author(s):  
Wenjing Wu

This paper has illustrated a "near wall" combustion model for a spark ignition engine that was included in a two-zone thermodynamic model. The model has calculated cylinder pressure and temperature, composition, as well as heat transfer of fresh and combustion gas. The CO submodel used a simplified chemical equation to calculate the dynamics of CO during the expansion phase. Subsequently, the HC submodel is introduced, and the post-flame oxidation of un-burned hydrocarbon was affected by the reaction/diffusion phenomenon. After burning 90% of the fuel, the hydrocarbon reaction dominates at a very late stage of combustion. This modeling method can more directly describe the ?near wall? flame reaction and its contribution to the total heat release rate.


Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


Sign in / Sign up

Export Citation Format

Share Document