Bermudagrass Establishment on Infertile Soil: Growth and Phosphorus Losses with Poultry Litter Ash and Triple Superphosphate

Author(s):  
Crystal Vance ◽  
Lewis Gaston ◽  
Jeffery Beasley
RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8927-8939
Author(s):  
Laura Fiameni ◽  
Ahmad Assi ◽  
Ario Fahimi ◽  
Bruno Valentim ◽  
Karen Moreira ◽  
...  

Rice husk poultry litter ash (RHPLA) is proposed as a valuable secondary source to recover phopshorus and amorphous silica in three steps.


2017 ◽  
Vol 35 (3) ◽  
pp. 117-127
Author(s):  
Daniel E. Wells ◽  
Jeffrey S. Beasley ◽  
Edward W. Bush ◽  
Lewis. A. Gaston

Abstract Poultry litter ash (PLA) is a byproduct of bioenergy production and an effective P source for horticultural crops since it reduces P losses from container production due to its low P solubility. Experiments were conducted to determine effects of rate and placement of PLA on P loss from greenhouse crop production and growth and quality of two commonly-grown greenhouse crops, Verbena canadensis Britton ‘Homestead Purple' and Lantana camara L. ‘New Gold', by comparing two rates (140 and 280 g·m−3 P or 0.4 and 0.8 lb·yd−3) and two application methods (post-plant topdressed and pre-plant incorporated). Leachate-dissolved reactive phosphorus (DRP) concentrations were reduced by an average of 24% as P rate was reduced from 280 to 140 g·m−3, but were 134% less on average when PLA was topdressed instead of incorporated. Foliar P concentrations were less 33% and 44% for verbena and lantana, respectively when plants were topdressed compared to incorporated. Shoot biomass of verbena and lantana was 9% and 24% greater, respectively, when incorporating instead of topdressing PLA. As a P source, PLA should be pre-plant incorporated within the substrate at a total P rate between 140 g·m−3 (0.4 lb·yd−3) and 280 g·m−3 (0.8 lb·yd−3). Index words: phosphorus, poultry litter ash, Verbena canadensis Britton ‘Homestead Purple', Lantana camara L. ‘New Gold', dissolved reactive phosphorus. Species used in this study: ‘Homestead Purple' verbena (Verbena canadensis Britton); ‘New Gold' lantana (Lantana camara L.).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6297
Author(s):  
Laura Fiameni ◽  
Ario Fahimi ◽  
Claudio Marchesi ◽  
Giampiero Pasquale Sorrentino ◽  
Alessandra Zanoletti ◽  
...  

Phosphate rocks are a critical resource for the European Union, and alternative sources to assure the future production of a new generation of fertilizers are to be assessed. In this study, a statistical approach, combined with a sustainability evaluation for the recovery of materials from waste containing phosphorus (P), is presented. This work proposes a strategy to recover P and silica (SiO2) from rice husk poultry litter ash (RHPLA). The design of experiment (DoE) method was applied to maximize the P extraction using hydrochloric acid (HCl), with the aim to minimize the contamination that can occur by leachable heavy metals present in RHPLA, such as zinc (Zn). Two independent variables, the molar concentration of the acid, and the liquid-to-solid ratio (L/S) between the acid and RHPLA, were used in the experimental design to optimize the operating parameters. The statistical analysis showed that a HCl concentration of 0.34 mol/L and an L/S ratio of 50 are the best conditions to recover P with low Zn contamination. Concerning the SiO2, its content in RHPLA is too low to consider the proposed recovery process as advantageous. However, based on our analysis, this process should be sustainable to recover SiO2 when its content in the starting materials is more than 80%.


Environments ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 50 ◽  
Author(s):  
Philip J. Bauer ◽  
Ariel A. Szogi ◽  
Paul D. Shumaker

Ash from power plants that incinerate poultry litter has fertilizer value, but research is lacking on optimal land application methodologies. Experiments were conducted to evaluate calcitic lime and flue gas desulfurization gypsum (FGDG) as potential fillers for poultry litter ash land applications. The ash had phosphorus (P) and potassium (K) contents of 68 and 59 g kg−1, respectively. Soil extractable P and K were measured in an incubation pot study, comparing calcitic lime to FGDG at filler/ash ratios of 1:3, 1:2, 1:1, 2:1, and 3:1. After one month, soils were sampled and annual ryegrass (Lolium multiflorum Lam.) seeds were planted to investigate how plant growth and uptake of P and K were influenced by the fillers. Application of ash alone or with fillers increased soil extractable P and K levels above unamended controls by 100% and 70%, respectively. Filler materials did not affect biomass or P and K concentration of the ryegrass. A field study with a commercial spinner disc fertilizer applicator was conducted to compare application uniformity of ash alone and filler/ash blends. Overall, test data suggested that uniform distribution of ash alone or with fillers is feasible in field applications using a commercial fertilizer spreader.


2019 ◽  
Vol 11 (10) ◽  
pp. 5349-5350
Author(s):  
L. Luyckx ◽  
G. H. J. de Leeuw ◽  
J. Van Caneghem

2002 ◽  
Vol 31 (3) ◽  
pp. 954 ◽  
Author(s):  
Eton E. Codling ◽  
Rufus L. Chaney ◽  
John Sherwell

HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 592-597 ◽  
Author(s):  
Daniel E. Wells ◽  
Jeffrey S. Beasley ◽  
Lewis A. Gaston ◽  
Edward W. Bush ◽  
Maureen E. Thiessen

Phosphorus (P) fertilizers with high water-solubility are often applied in excessive amounts to porous horticultural substrates to produce high-quality plants. As a result, high P losses during containerized plant production have presented an environmental challenge to responsible growers. Poultry litter ash (PLA), a byproduct of bioenergy production, contains P concentrations comparable to conventional P fertilizers but is characterized as having lower water-solubility. Therefore, a series of experiments were conducted to characterize effects of PLA on container-plant growth and P leaching. PLA was compared with superphosphate (SP), a highly water-soluble P source, in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 (SP:PLA) in the production of Lantana camara L. ‘New Gold’. In 2011, lantana fertilized with higher ratios of PLA exhibited slower growth with lower shoot and root biomasses compared with 100% SP-fertilized lantana. However, in 2012, differences in fertilizer treatments lessened, with 100% PLA-fertilized lantana exhibiting 14% less shoot biomass and no differences in root biomass compared with 100% SP-fertilized lantana. Measurement of shoot:root biomass, a common indicator of P deficiency, was not different between any P treatments in 2011 or 2012. This indicates root growth was most likely the driving factor in P-treatment effects on shoot biomass in each year of the experiment. During a postproduction field trial, no differences in growth or biomass were observed between lantana previously fertilized with P, regardless of source. However, application of PLA as the single P source reduced dissolved reactive P (DRP) concentrations in leachate >90% and total P (TP) mass losses 69% compared with 100% SP-fertilized lantana during container production, with P treatments reducing DRP and TP losses as PLA ratios increased. Therefore, the benefit of P-loss reduction during container production achieved through PLA application may warrant the acceptance of slightly smaller plants or extending production cycles.


Sign in / Sign up

Export Citation Format

Share Document