container production
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 30 (4) ◽  
pp. 471-479
Author(s):  
Manjot Kaur Sidhu ◽  
Roberto G. Lopez ◽  
Sushila Chaudhari ◽  
Debalina Saha

Common liverwort (Marchantia polymorpha) is a primitive, spore-bearing bryophyte that thrives in containerized ornamental crop propagation and production environments. It is one of the major weed problems in container nurseries and greenhouses because it competes with ornamental plants for soil/growing medium, nutrients, water, space, and oxygen within the container. As a result, its presence can reduce the overall quality and market value of the ornamental crop. Once established in nurseries and greenhouses, it spreads rapidly because of its ability to propagate both asexually and sexually. Currently, no effective methods of controlling common liverwort in container production systems are available because a significant knowledge gap exists. Therefore, research is needed to determine whether organic mulches (types, depths, moisture holding capacity, and particle size), biopesticides, and strategic placement of fertilizers within containers suppress or inhibit common liverwort growth and development. In addition, newer chemicals (both synthetic and organic) and combinations need to be tested on different growth stages of common liverwort. The objective of this review was to summarize previous and current research related to common liverwort control in container production, and to identify areas where additional research is needed either to improve current control methods or to develop new ones.


2019 ◽  
Vol 37 (4) ◽  
pp. 113-119
Author(s):  
Kayla R. Sanders ◽  
Jeffrey S. Beasley ◽  
Edward W. Bush ◽  
Stacia L. Conger

Abstract Nutrient leaching during nursery container production can have negative effects on plant growth and the environment. The objective of this study was to evaluate effects of fertilizer source at two irrigation depths on nutrient leaching during coleus [Plectranthus scutellarioides (L.) Codd] ‘Solar Sunrise' container production to develop best management practices. Coleus received no fertilizer, a controlled-release fertilizer (CRF), or a water-soluble fertilizer (WSF) applied at 0.30 kg N and P per m3 (0.02 lb per ft3) and were irrigated at 1.9 or 3.8 cm.day−1 (0.7 or 1.5 in.day−1) for 56 days after planting (DAP). Leachate was analyzed every 7 DAP for inorganic N and dissolved total P (DTP). At 56 DAP, root biomass, leaf quality, and plant growth index were similar between CRF and WSF treatments at both irrigation depths. Highest inorganic N and DTP losses occurred within 21 DAP. Application of WSF resulted in higher cumulative N and DTP losses compared to CRF applications. Coleus irrigated at 3.8 cm.day−1 and fertilized with WSF resulted in higher DTP losses compared to CRF applications regardless of irrigation depth. Reducing irrigation reduced inorganic N leaching for each fertilizer source. Application of CRF provided consistent growth while curbing nutrient losses across both irrigation depths compared to WSF. Index words: controlled-release fertilizer, water-soluble fertilizer, nursery producers, best management practices. Chemicals used in this study: Micronutrients mix (Micromax®); controlled-release fertilizer (Osmocote® Classic); water-soluble fertilizer (Grower's Special). Species used in this study: Coleus [Plectranthus scutellarioides (L.) Codd] ‘Solar Sunrise'.


HortScience ◽  
2019 ◽  
Vol 54 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Tongyin Li ◽  
Guihong Bi

Blueberry production in Mississippi (MS) is mainly rabbiteye blueberries (Vaccinium virgatum Ait.), which ripen in late May to June. Growing early-ripening southern highbush blueberries (SHBs) (Vaccinium corymbosum L.) presents an opportunity for early fruit production and increased market price for locally produced blueberries, yet faces the challenge of spring frost damage. One-year-old liners of 10 SHB cultivars were transplanted into 15-gallon plastic containers and placed in a high tunnel in Apr. 2015. Blueberry plants were fertilized with either a conventional or an organic fertilizer at comparable rates. Plants were evaluated for berry yield, timing of first berry harvest and peak harvest, single berry weight, and soluble solid content during the 2016 and 2017 growing seasons. The high tunnel increased monthly maximum temperature by 3.2 to 10.4 °C, monthly average temperature by 0.7 to 4.2 °C, and minimum monthly temperature for up to 3.0 °C compared with outdoor environment. Photosynthetically active radiation (PAR) at noon in the high tunnel ranged from 477 to 1411 µmol·m−2·s−1 and relative humidity ranged from 54.6% to 81.7% from Jan. 2016 to June 2017. SHBs in the high tunnel produced first berry harvest during the first week of April in both growing seasons. Total berry yield per plant ranged from 921 g to 2136 g in 2016 and from 1222 g to 2480 g in 2017. Compared with the organic fertilizer, conventional fertilizer increased berry yield in April and May, and total berry yield in 2016, but resulted in similar yield in 2017. Eight cultivars (Emerald, Farthing, Gupton, Meadowlark, Pearl, Rebel, Star, and Sweetcrisp) produced single berries that averaged more than 2 g per berry in 2016, compared with two cultivars (Gupton and Pearl) in 2017. Smaller berry size may have resulted from the generally increasing yield from 2016 to 2017. ‘Sweetcrisp’ produced berries with higher soluble solid content, 14.2% and 14.1% in 2016 and 2017, than the other nine cultivars. Container production of SHB cultivars in a high tunnel produced total berry yield equivalent to 6458 kg/ha in 2016 to 7500 kg/ha in 2017, advanced blueberry production by 4 to 5 weeks, and therefore may serve as a potential production system for early fruiting blueberries in Mississippi.


2018 ◽  
Vol 36 (4) ◽  
pp. 126-132
Author(s):  
Elizabeth F. Crutchfield ◽  
Milton E. McGiffen ◽  
Donald J. Merhaut

Abstract Biochar is a highly adsorptive carbon substrate. A study was conducted to determine the ability of biochar to reduce fertilizer runoff from nurseries. Potting mix was augmented with biochar at different rates, ranging from 0% to 30% by volume, with some treatments planted with Begonia x semperflorens-cultorum hort. ‘Viva.' The pots were fertilized with a modified Hoagland solution and watered four times a week. The leachate was collected from each pot after watering and aggregated into weekly samples. Leachate from each week was analyzed photometrically for nitrate, ammonium and ortho-phosphate concentrations. Leaching of all three ions was reduced in the biochar-amended treatments. Biochar did not affect plant growth, nitrogen or phosphorus content of the plant material. Index words: Ammonium nitrate, phosphate, biochar, begonia, Begonia x semperflorens-cultorum hort. ‘Viva,' media, container production Species used: Begonia x semperflorens-cultorum hort. ‘Viva'


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1692-1699 ◽  
Author(s):  
Patrick H. Kingston ◽  
Carolyn F. Scagel ◽  
David R. Bryla ◽  
Bernadine Strik

The purpose of the present study was to investigate the suitability of different soilless substrates for container production of highbush blueberry (Vaccinium sp.). Young plants of ‘Snowchaser’ blueberry were grown in 4.4-L pots filled with media containing 10% perlite and varying proportions of sphagnum moss, coconut (Cocos nucifera L.) coir, and douglas fir [Pseudotsuga menziesii Mirb. (Franco)] bark, as well as a commercially available mix of peatmoss, perlite, and other ingredients for comparison. Total plant dry weight (DW) was similar among the treatments at 72 days after transplanting, but at 128 days, total DW was nearly twice as much in the commercial mix and in media with ≥60% peat or coir than in media with ≥60% bark. Inadequate irrigation likely played a role in poor plant growth in bark. Bark had lower porosity and water holding capacity than peat, coir, or the commercial mix and, therefore, dried quickly between irrigations. Bark also reduced plant uptake efficiency of a number of nutrients, including N, P, K, S, Ca, Mg, Mn, B, Cu, and Zn. Uptake efficiency of P, K, and Mg also differed between plants grown in peat and coir, which in most cases was a function of the initial concentration of nutrients in the media. Before planting, peat had the highest concentration of Mg and Fe among the media, whereas coir had the highest concentration of P and K. Leachate pH was initially lowest with peat and highest with coir but was similar among each of the media treatments by the end of the study. Electrical conductivity (EC) of leachate never exceeded 0.84 dS·m−1 in any treatment. Overall, peat and coir appear to be good substrates for container production of highbush blueberry. Bark, on the other hand, was less suitable, particularly when it exceeded 30% of the total media composition.


2017 ◽  
Vol 27 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Paul C. Bartley ◽  
Glenn R. Wehtje ◽  
Anna-Marie Murphy ◽  
Wheeler G. Foshee ◽  
Charles H. Gilliam

Two commonly used management practices for weed control in container plant production are hand pulling and herbicide applications. There are problems associated with these methods including crop phytotoxicity and environmental concerns associated with off-target movement of herbicides. Other nonchemical weed control methods could reduce herbicide-based environmental concerns, mitigate herbicide-resistance development, and improve the overall level of weed control in container nursery production. Readily available tree-mulch species, eastern red cedar (Juniperus virginiana), ground whole loblolly pine (Pinus taeda), chinese privet (Ligustrum sinense), and sweetgum (Liquidambar styraciflua) were harvested, chipped, and evaluated at multiple depths with and without the herbicide dimethenamid-p. Pine bark mini-nuggets were also evaluated. Mulches were applied at depths of 1, 2, and 4 inches and evaluated over three 30-day periods for their effectiveness in suppressing spotted spurge (Chamaesyce maculata), long-stalked phyllanthus (Phyllanthus tenellus), and eclipta (Eclipta prostrata). After 30 days, herbicide/mulch combinations, as well as mulch treatments alone, had reduced weed fresh weight 82% to 100% with 1 inch of mulch. By 168 days after treatment, dimethenamid-p had lost all efficacy, and mulch depth was the only factor that still had significant effects, reducing spotted spurge fresh weight by 90%, 99.5%, and 100% with depths of 1, 2, and 4 inches, respectively. The economics of mulch weed control will depend on variables such as available time, nursery layout, location, and availability of resources, equipment, among others. Regardless of variable economic parameters, data from this study reveals that any of these potential mulch species applied at a depth of at least 2 inches will provide long-term weed control in nursery container production.


HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1065-1072
Author(s):  
Ryan W. Dickson ◽  
Paul R. Fisher ◽  
William R. Argo

Floriculture species differ in their effect on substrate-pH and the resulting substrate micronutrient availability in container production. The objective was to quantify effects of floriculture plant species on substrate-pH. In a growth chamber factorial experiment, 15 floriculture species were grown in 70%:30% by volume peat:perlite substrate and fertilized with nutrient solutions containing 100 mg·L−1 N and NH4+-N:NO3−-N nitrogen ratios of 0:100, 20:80, or 40:60. The relationship between substrate-pH and milliequivalents (meq) of acid or base per unit volume of substrate was quantified by titration with hydrated dolomitic lime or HCl. After 33 days, species and solution type effects on substrate-pH and estimated meq of acid or base produced were evaluated. Final substrate-pH ranged from 4.83 for geranium in 40:60 solution to 6.58 for lisianthus in 0:100 solution, compared with an initial substrate-pH of 5.84. This change in substrate-pH corresponded with a net meq of acid or base produced per gram of tissue dry mass gain (NMEQ) ranging across solutions and species from 1.47 of base for lisianthus in the 0:100 solution to 2.10 of acid for coleus in the 40:60 solution. With the 0:100 solution, geranium produced the greatest NMEQ of acid (0.07), whereas lisianthus produced the greatest NMEQ of base (1.47). Because all N in the 0:100 solution was in the NO3− anion form, meq of both anions and cations taken up by plant roots could be calculated based on tissue analysis. With the 0:100 solution, species that took up more anions than cations into plant tissue tended to have a more basic effect on substrate-pH, as would be expected to maintain electroneutrality. Data were used to estimate the percent NH4+-N of total N in a nutrient solution that would be neutral (results in no substrate-pH change) for each species. This neutral percent NH4+-N of total N ranged from ≈0% (geranium) to 35% (pentas). Species were separated into three clusters using k-means cluster analysis with variables related to NMEQ and anion or cation uptake. Species were clustered into groups that had acidic (geranium and coleus), intermediate (dusty miller, impatiens, marigold, new guinea impatiens, petunia, salvia, snapdragon, and verbena), or basic (lisianthus, pansy, pentas, vinca, and zinnia) effects on substrate-pH. Evaluating the tendency to increase or decrease substrate-pH across a range of floriculture species, and grouping of plants with similar pH effects, could help predict NH4+:NO3− ratios for a neutral pH effect and assist growers in managing substrate-pH for container production.


Sign in / Sign up

Export Citation Format

Share Document