The Sulfur-Isotopic Composition of Cenozoic Seawater Sulfate: Implications for Pyrite Burial and Atmospheric Oxygen

2000 ◽  
Vol 42 (6) ◽  
pp. 491-498 ◽  
Author(s):  
Adina Paytan ◽  
Kevin R. Arrigo
2002 ◽  
Vol 203 (1) ◽  
pp. 413-429 ◽  
Author(s):  
Matthew T. Hurtgen ◽  
Michael A. Arthur ◽  
Neil S. Suits ◽  
Alan J. Kaufman

2017 ◽  
Vol 114 (23) ◽  
pp. 5941-5945 ◽  
Author(s):  
Virgil Pasquier ◽  
Pierre Sansjofre ◽  
Marina Rabineau ◽  
Sidonie Revillon ◽  
Jennifer Houghton ◽  
...  

The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial−interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial−interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial−interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.


2010 ◽  
Vol 7 (4) ◽  
pp. 6051-6088 ◽  
Author(s):  
A. Deek ◽  
K. Emeis ◽  
U. Struck

Abstract. Nitrate loading of coastal ecosystems by rivers that drain industrialised catchments continues to be a problem in the South Eastern North Sea, in spite of significant mitigation efforts over the last 2 decades. To identify nitrate sources, sinks, and turnover in three German rivers that discharge into the German Bight, we determined δ 15N-NO3- and δ18O- NO3- in nitrate and δ 15N of particulate nitrogen for the period 2006–2009 (biweekly samples). The nitrate loads of Rhine, Weser and Ems varied seasonally in magnitude and δ 15N-NO3- (6.5–21‰), whereas the δ 18O-NO3- (-0.3–5.9‰) and δ 15N-PN (4–14‰) were less variable. Overall temporal patterns in nitrate mass fluxes and isotopic composition suggest that a combination of nitrate delivery from nitrification of soil ammonia in the catchment and assimilation of nitrate in the rivers control the isotopic composition of nitrate. Nitrification in soils as a source is indicated by low δ 18O-NO3- in winter, which traces the δ 18O of river water. Mean values of δ 18O-H2O were between –9.4‰ and –7.3‰; combined in a ratio of 2:1 with the atmospheric oxygen δ 18O of 23.5‰ agrees with the found δ 18O of nitrate in the rivers. Parallel variations of δ 15N-NO3- and δ 18O-NO3- within each individual river are caused by isotope effects associated with nitrate assimilation in the water column, the extent of which is determined by residence time in the river. Assimilation is furthermore to some extent mirrored both by the δ 15N of nitrate and particulate N. Although δ 15-NO3- observed in Rhine, Weser and Ems are reflected in high average δ 15N-PN (between 6‰ and 9‰, both are uncorrelated in the time series due to lateral and temporal mixing of PN. That a larger enrichment was consistently seen in δ 15N-NO3- relative to δ 18O-NO3- is attributed to constant additional diffuse nitrate inputs deriving from soil nitrification in the catchment area. A statistically significant inverse correlation exists between increasing δ 15N-NO3- values and decreasing NO3- concentrations. This inverse relationship – observed in each seasonal cycle – together with a robust relationship between human dominated land use and δ 15N-NO3- values demonstrates a strong influence of human activities and riverine nitrate consumption efficiency on the isotopic composition of riverine nitrate.


Sign in / Sign up

Export Citation Format

Share Document