cascadia margin
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 12)

H-INDEX

35
(FIVE YEARS 1)

Author(s):  
Michael Riedel ◽  
Timothy S. Collett ◽  
Martin Scherwath ◽  
John W. Pohlman ◽  
Roy Hyndman ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Wen-Bin Doo

Abstract A zone of significant high-amplitude magnetic anomalies is observed without a comparable gravity high along the Cascadia margin and is spatially correlated with the low-velocity fore-arc mantle wedge, which is understood to be serpentinized fore-arc mantle and is further considered to be the main source of the high-amplitude magnetic anomalies. To test this hypothesis, the magnetization-density ratio (MDR) is estimated along the Cascadia margin to highlight the physical characteristics of serpentinization (reduced density and increased magnetization). Interestingly, high MDR values are found only in central Oregon, where slab dehydration and fore-arc mantle serpentinization (50%-60% serpentinization) are inferred in conjunction with sparse seismicity. This result may indicate either poorly serpentinized fore-arc mantle (low degree of serpentinization) or that the fore-arc mantle is deeper than the Curie temperature isotherm for magnetite in northern and southern Cascadia. I thus propose that serpentinized fore-arc mantle may not be the major contributor to the high-amplitude magnetic anomalies in these segments. This finding means that magnetic anomaly highs and serpentinized fore-arc mantle may not be completely positively related in subduction zones. On the other hand, the MDR pattern reveals the segmentation of the Cascadia subduction zone, which is consistent with several previous observations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anna P. M. Michel ◽  
Victoria L. Preston ◽  
Kristen E. Fauria ◽  
David P. Nicholson

Open questions exist about whether methane emitted from active seafloor seeps reaches the surface ocean to be subsequently ventilated to the atmosphere. Water depth variability, coupled with the transient nature of methane bubble plumes, adds complexity to examining these questions. Little data exist which trace methane transport from release at a seep into the water column. Here, we demonstrate a coupled technological approach for examining methane transport, combining multibeam sonar, a field-portable laser-based spectrometer, and the ChemYak, a robotic surface kayak, at two shallow (<75 m depth) seep sites on the Cascadia Margin. We demonstrate the presence of elevated methane (above the methane equilibration concentration with the atmosphere) throughout the water column. We observe areas of elevated dissolved methane at the surface, suggesting that at these shallow seep sites, methane is reaching the air-sea interface and is being emitted to the atmosphere.


2021 ◽  
Vol 9 ◽  
Author(s):  
Susan G. Merle ◽  
Robert W. Embley ◽  
H. Paul Johnson ◽  
T.-K. Lau ◽  
Benjamin J. Phrampus ◽  
...  

Nearly 3,500 methane bubble streams, clustered into more than 1,300 methane emission sites, have been identified along the US Cascadia margin, derived both from archived published data and 2011, 2016–2018 dedicated multibeam surveys using co-registered seafloor and water column data. In this study, new multibeam sonar surveys systematically mapped nearly 40% of the US Cascadia margin, extending from the Strait of Juan de Fuca in the north to the Mendocino fracture zone in the south, and bounded East–West by the coast and the base of the accretionary prism. The frequency-depth histogram of the bubble emission sites has a dominant peak at the 500 m isobar, which extends laterally along much of the Cascadia margin off Oregon and Washington. Comparisons with published seismic data on the distribution of bottom simulating reflectors (BSR), which is the acoustic impedance boundary between methane hydrate (solid phase) and free gas phase below, correlates the bottom simulating reflectors upward termination of the feather edge of methane hydrate stability (FEMHS) zone and the newly identified bubble emission sites off Oregon and Washington. The Cascadia margin off northern California, where the BSR ends seaward of the FEMHS, has fewer sites centered on the 500 m isobaths, although data are more limited there. We propose that the peak in bubble emission sites observed near the 500 m isobath results from migration of free gas from beneath the solid phase of the BSR upslope to the FEMHS termination zone, and suggest that this boundary will be useful to monitor for a change in methane release rate potentially related to a warming ocean.


Polar Science ◽  
2021 ◽  
pp. 100659
Author(s):  
Thulasi Thena ◽  
Kuppusamy Mohan ◽  
Muthusamy Prakasam ◽  
Kothandaraman Saravanan

2019 ◽  
Vol 124 (3) ◽  
pp. 2829-2843 ◽  
Author(s):  
H. Paul Johnson ◽  
Susan Merle ◽  
Marie Salmi ◽  
Robert Embley ◽  
Erica Sampaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document