Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc

2021 ◽  
pp. 1-21
Author(s):  
L. Chavarría ◽  
C. Bustamante ◽  
A. Cardona ◽  
G. Bayona
2021 ◽  
Author(s):  
Luisa Chavarria ◽  
Camilo Bustamante ◽  
Agustín Cardona ◽  
Germán Bayona

<p>Igneous rocks in magmatic arcs record variations in composition, thermal flux, and subduction dynamics through time. In the Northern Andes, arc magmatism of the Jurassic age registers a complicated history, including the fragmentation of Pangea at the end of the Triassic and the beginning of a new subduction zone in the Jurassic located at the western margin of South America.</p><p>We characterized the crustal thickness variations of the Early Jurassic to Early Cretaceous (194-130 Ma) in plutonic and volcanic rocks of the Northern Andes of Colombia and Ecuador, using trace elements signatures and analyzed the implications of the emplacement conditions during the last stage of the magmatism using Al-in-hornblende thermobarometry and mineral chemistry. Moderate rare earth elements (REE) slopes and depleted heavy REE patterns show that the primary residual magma source was amphibole, but plagioclase and pyroxene were also significant residual phases indicating that the magma source was formed in a crust that varied in thickness from 35-50 km. The La/Yb and Sr/Y crustal quantifications variations indicate that the arc underwent two thickening episodes. The first episode (190 to 180 Ma) is associated with a magmatic event. The second episode (165 to 154 Ma) is related to the shift to an oblique subduction setting and a subsequent collisional event that produced medium P-T metamorphic rocks. In the Late Jurassic to Early Cretaceous (154-130 Ma), the crust became thinner and, in this scenario, was emplaced the last stage of plutonism with depths that varied from shallow to deep level (until 25.5 km) in the crust.</p>


2020 ◽  
Author(s):  
Luisa Chavarria ◽  
Camilo Bustamante ◽  
Agustín Cardona ◽  
Marcela Restrepo

<p>Plutonic rocks in magmatic arcs record variations in composition, thermal flux, and dynamics of subduction through time. In the northern Andes, arc magmatism of Jurassic age registers a complex history, including the fragmentation of Pangea at the end of the Triassic as well as the beginning of a new subduction zone in the Jurassic located at the western margin of South America. Two contrasting models have been proposed by previous researches to explain the evolution of this arc: i) continuous subduction with a slab-roll back that produced a crustal thinning and ii) oblique subduction associated with a crustal thickening.</p><p>We characterized the emplacement conditions and crustal thickness variations of the Jurassic and Early Cretaceous arc in the northern Andes from 170 to 130 Ma using a combination of thermobarometers and trace element signatures and reviewed the previously suggested evolution models. The zircon and apatite saturation temperatures indicate that the intermediate magma became Zr and P<sub>2</sub>O<sub>5</sub> oversaturated at 695-739 °C and 849-909 °C, respectively. Pressures obtained with the Al-in-hornblende barometer shows that the magma emplacement pressures varied from 1.2 to 7.1 kbar, with two distinct trends. A low-pressure trend (<2 kbar) related to different stock size bodies emplaced through the arc formation and a high-pressure trend (>5 kbar), which is restricted to the southern segment of the arc at the end of the Jurassic. Low Sm/Yb and Dy/Yb ratios show that the magma interacted with an amphibole-rich crust, implying that the Northern Andes was characterized by a thin crust during the Jurassic.</p><p>The shallow emplacement pressures and thin crust suggest that the Jurassic magmatic arc record a predominant extensional tectonic style that could be linked with the Pangea breakup and the beginning of the arc magmatism. However, the younger magmatic pulses are characterized by higher emplacement pressures associated with an increase in crustal thickness during convergence. Such variation indicates that the Jurassic magmatism in the Northern Andes experienced significant changes in their tectonic controls and not a single dominant mechanism, as has been proposed.</p>


Palaeobotany ◽  
2016 ◽  
Vol 7 ◽  
pp. 80-95 ◽  
Author(s):  
L. B. Golovneva

The Ul’ya flora comes from the Coniacian volcanogenic deposits of the Amka Formation (the Ul'ya depression, southern part of the Okhotsk-Chukotka volcanogenic belt). Ginkgoaleans are diverse in this flora and represented by three genera: Ginkgo, Sphenobaiera and Baiera. All specimens have no cuticle and were assigned to morphotaxa. Genus Ginkgo includes two species: G. ex gr. adiantoides (Ung.) Heer with entire leaves and G. ex gr. sibirica Heer with dissected leaves. Genus Sphenobaiera also consists of two species: S. ex gr. longifolia (Pom.) Florin with 4–8 leaf lobes and S. ex gr. biloba Prynada with two leaf lobes. Genus Baiera is represented by new species B. lebedevii Golovn., sp. nov.Leaves of this species are 25–30 cm long and 13–16 cm wide, narrowly wedge-shaped with flat slender petiole, dichotomously dissected 4–5 times into linear segments 3–6 mm wide with 6–12 veins. The length of ultimate segments is equal to about a half of leaf length. Leaves attached spirally to ovoid short shoots about 2 cm long. Among the Late Cretaceous floras similar diversity of ginkgoaleans was recorded only in the Turonian-Coniacian Arman flora from middle part of the Okhotsk-Chukotka volcanogenic belt (Herman et al., 2016). Four species of ginkgoaleans from the Ul’ya flora (except G. ex gr. adiantoides) are considered as the Early Cretaceous relicts.


Sign in / Sign up

Export Citation Format

Share Document