Computing Green's function of the initial-boundary value problem for the wave equation in a layered cylinder

2014 ◽  
Vol 91 (12) ◽  
pp. 2514-2534 ◽  
Author(s):  
V. Yakhno ◽  
D. Ozdek
2008 ◽  
Vol 05 (02) ◽  
pp. 279-294 ◽  
Author(s):  
CHIU-YA LAN ◽  
HUEY-ER LIN ◽  
SHIH-HSIEN YU

We study an initial boundary value problem for the Broadwell model with a transonic physical boundary. The Green's function for the initial boundary value problem is obtained by combining the estimates of the full boundary data and the Green's function for the initial value problem. The full boundary data is constructed from the imposed boundary data through an iteration scheme. The iteration scheme is designed to separate the interaction between the boundary wave and the interior wave and leads to a convergent series in the iterative boundary estimates.


Author(s):  
Shkelqim Hajrulla ◽  
Leonard Bezati ◽  
Fatmir Hoxha

We introduce a class of logarithmic wave equation. We study the global existence of week solution for this class of equation. We deal with the initial boundary value problem of this class. Using the Galerkin method and the Gross logarithmic Sobolev inequality we establish the main theorem of existence of week solution for this class of equation arising from Q-Ball Dynamic in particular.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fosheng Wang ◽  
Chengqiang Wang

We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establish first by the celebrated convexity argument a finite time blow-up criterion for the initial boundary value problem in question; we prove second by an a priori estimate argument that some solutions to the problem exists globally if the nonlinearity is “weaker,” in a certain sense, than the frictional damping, and if the viscoelastic damping is sufficiently strong.


Sign in / Sign up

Export Citation Format

Share Document