A modified taylor series method for solving initial-value problems in ordinary differential equations

1997 ◽  
Vol 65 (3-4) ◽  
pp. 231-246 ◽  
Author(s):  
F. Reverter ◽  
J. M. Oller
2018 ◽  
Vol 8 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Petr Veigend ◽  
Gabriela Nečasová ◽  
Václav Šátek

Abstract This paper deals with a model of the telegraph line that consists of system of ordinary differential equations, rather than partial differential telegraph equation. Numerical solution is then based on an original mathematical method. This method uses the Taylor series for solving ordinary differential equations with initial condition - initial value problems in a non-traditional way. Systems of ordinary differential equations are solved using variable order, variable step-size Modern Taylor Series Method. The Modern Taylor Series Method is based on a recurrent calculation of the Taylor series terms for each time interval. The second part of paper presents the solution of linear problems which comes from the model of telegraph line. All experiments were performed using MATLAB software, the newly developed linear solver that uses Modern Taylor Series Method. Linear solver was compared with the state of the art solvers in MATLAB and SPICE software.


Author(s):  
Svetlin Georgiev ◽  
Inci Erhan

A recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order $p$ on time scales. The error and convergence analysis of the method is also obtained. The 2 step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document