Non-asymptotically stable linear time-invariant systems†

1970 ◽  
Vol 11 (1) ◽  
pp. 77-80 ◽  
Author(s):  
N. SREEDHAR
Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 915
Author(s):  
Robert Vrabel

Based on the eigenvalue idea and the time-varying weighted vector norm in the state space R n we construct here the lower and upper bounds of the solutions of uniformly asymptotically stable linear systems. We generalize the known results for the linear time-invariant systems to the linear time-varying ones.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 386
Author(s):  
Yuxin Wang ◽  
Huafei Sun ◽  
Yueqi Cao ◽  
Shiqiang Zhang

This paper extends the former approaches to describe the stability of n-dimensional linear time-invariant systems via the torsion τ ( t ) of the state trajectory. For a system r ˙ ( t ) = A r ( t ) where A is invertible, we show that (1) if there exists a measurable set E 1 with positive Lebesgue measure, such that r ( 0 ) ∈ E 1 implies that lim t → + ∞ τ ( t ) ≠ 0 or lim t → + ∞ τ ( t ) does not exist, then the zero solution of the system is stable; (2) if there exists a measurable set E 2 with positive Lebesgue measure, such that r ( 0 ) ∈ E 2 implies that lim t → + ∞ τ ( t ) = + ∞ , then the zero solution of the system is asymptotically stable. Furthermore, we establish a relationship between the ith curvature ( i = 1 , 2 , ⋯ ) of the trajectory and the stability of the zero solution when A is similar to a real diagonal matrix.


Sign in / Sign up

Export Citation Format

Share Document