Power-added efficiency errors with RF power amplifiers

1997 ◽  
Vol 82 (3) ◽  
pp. 303-312 ◽  
Author(s):  
STEPAN LUCYSZYN
Author(s):  
Hanlin Xie ◽  
Zhihong Liu ◽  
Wenrui Hu ◽  
Yu Gao ◽  
Hui Teng Tan ◽  
...  

Abstract AlN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) on silicon substrate using in-situ SiN as gate dielectric were fabricated and their RF power performance at mobile system-on-chip (SoC) compatible voltages was measured. At a mobile SoC-compatible supply voltage of Vd = 3.5 V/5 V, the 90-nm gate-length AlN/GaN MISHEMTs showed a maximum power-added efficiency (PAE) of 62%/58%, a maximum output power density (Poutmax) of 0.44 W/mm/0.84 W/mm and a linear gain of 20 dB/19 dB at the frequency of 5 GHz. These results suggest that the in-situ-SiN/AlN/GaN-on-Si MISHEMTs are promising for RF power amplifiers in 5G mobile SoC applications.


Author(s):  
Ronald Montesinos ◽  
Corinne Berland ◽  
Mazen Abi Hussein ◽  
Olivier Venard ◽  
Philippe Descamps

LInear amplification using Non-linear Components (LINC) is an architecture that achieves linear power amplification for radio-frequency (RF) transmitters. This paper describes the impact of RF power amplifiers (PAs) class on the overall system performances. The linearity and efficiency of the LINC transmitter with different PA classes (AB, B, C, D, E, F, F−1, and J) are evaluated and compared, in terms of error vector magnitude (EVM), adjacent channel leakage ratio (ACLR), and power added efficiency (PAE), for a 16QAM modulation having 5.6 dB peak to average power ratio. Simulations are performed using a gallium-nitride high electron mobility transistor (GaN HEMT) for a power amplifier with an output power of 10 W at 900 MHz.


2021 ◽  
Vol 31 (4) ◽  
pp. 417-420
Author(s):  
Tommaso Cappello ◽  
Zoya Popovic ◽  
Kevin Morris ◽  
Angelo Cappello

Sign in / Sign up

Export Citation Format

Share Document