Robust fault detection filter design for networked control systems with delay distribution characterisation

2011 ◽  
Vol 42 (10) ◽  
pp. 1661-1668 ◽  
Author(s):  
Yong Zhang ◽  
Huajing Fang
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Long Wang ◽  
Tian-Bao Wang ◽  
Wei-Wei Che

This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Weilai Jiang ◽  
Chaoyang Dong ◽  
Erzhuo Niu ◽  
Qing Wang

The problem of robust fault detection filter (FDF) design and optimization is investigated for a class of networked control systems (NCSs) with random delays. The NCSs are modeled as Markovian jump systems (MJSs) by assuming that the random delays obey a Markov chain. Based on the model, an observer-based residual generator is constructed and the corresponding fault detection problem is formulated as anH∞filtering problem by which the error between the residual signal and the fault is made as small as possible. A sufficient condition for the existence of the desired FDF is derived in terms of linear matrix inequalities (LMIs). Furthermore, to improve the performance of the robust fault detection systems, a time domain optimization approach is proposed. The solution of the optimization problem is given in the form of Moore-Penrose inverse of matrix. A numerical example is provided to illustrate the effectiveness and potential of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document