Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties

2014 ◽  
Vol 46 (16) ◽  
pp. 3019-3031 ◽  
Author(s):  
Yiqing Huang ◽  
Changyin Sun ◽  
Chengshan Qian ◽  
Li Wang
2020 ◽  
Vol 42 (15) ◽  
pp. 3035-3042
Author(s):  
Zhongwei He ◽  
Wei Xie

This paper is concerned with interval state estimation for a class of Linear Parameter-Varying systems with parametric uncertainties. Firstly, sufficient conditions to guarantee both the cooperativity and stability of observation error dynamics are presented in terms of parameterized matrix inequality formulations. Secondly, a novel method for scheduled controller law design is proposed in the framework of interval observer design. Under the assumptions that scheduled parameters have a polytopic structure property, the problems of the existence conditions of observers and scheduled controller design are transformed into finite linear matrix inequalities ones, which can be solved by convex optimization algorithms. The validity of the proposed state estimation methods is illustrated through a simple example.


2019 ◽  
Vol 42 (6) ◽  
pp. 1083-1096 ◽  
Author(s):  
Mohammad Reza Soltanpour ◽  
Farshad Hasanvand ◽  
Reza Hooshmand

In this paper, a gain scheduled [Formula: see text] state-feedback controller has been designed to control the attitude of a linear parameter varying (LPV) model of a quadrotor unmanned aerial vehicle (UAV). The scheduling parameters vector, which consists of some states and the control inputs, must vary in a specified polyhedron so that the affine LPV model would be analyzable; therefore, some pre-assumed constraints on states and input saturation have been taken into account in design process. The stabilization and disturbance attenuation conditions are obtained via elementary manipulations on the notion of [Formula: see text] control design. The resulting parameter dependent linear matrix inequalities are solved through a Robust LMI Parser (Rolmip) – which works jointly with YALMIP (A toolbox for modeling and optimization in MATLAB)– by transforming polynomial parameter dependent matrices into multi-simplex domain, to best deal with nonconvex problems. In the end, simulation results have been presented and compared with existing literature to examine the capability of such method in the presence and absence of wind disturbances.


Sign in / Sign up

Export Citation Format

Share Document