Effect of screen floors on populations of honey bees and parasitic mites (Varroa destructor)

2004 ◽  
Vol 43 (3) ◽  
pp. 114-117 ◽  
Author(s):  
John R Harbo ◽  
Jeffrey W Harris
2010 ◽  
Vol 142 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Geoffrey R. Williams ◽  
Krista Head ◽  
Karen L. Burgher-MacLellan ◽  
Richard E.L. Rogers ◽  
Dave Shutler

AbstractWestern honey bees, Apis mellifera L. (Hymenoptera: Apidae), occur in nearly every region inhabited by man because they provide valuable honey, wax, and pollination services. Many commercial honey bee operations are plagued by economically important parasites; however, beekeepers on the island of Newfoundland, Canada, are in a unique position because of the province of Newfoundland and Labrador’s strict import regulations and geographic isolation. We surveyed about 25% of the island’s approximately 100 managed honey bee colonies. The parasitic mites Varroa destructor Anderson and Trueman (Acari: Varroidae) and Acarapis woodi (Rennie) (Acari: Tarsonemidae) were not detected, whereas Nosema spp. microsporidia were detected in two of four beekeeping operations and in 11 of 23 (48%) colonies (intensity = 482 609 ± 1199 489 (mean ± SD); median intensity = 0). Because V. destructor and A. woodi are important pests that typically require chemical treatments, beekeepers on the island of Newfoundland may be uniquely positioned to market organic honey bee products from colonies that could also be a source of mite-naïve bees for research.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


2021 ◽  
Author(s):  
Arrigo Moro ◽  
Tjeerd Blacquière ◽  
Bjørn Dahle ◽  
Vincent Dietemann ◽  
Yves Le Conte ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36285 ◽  
Author(s):  
Coby van Dooremalen ◽  
Lonne Gerritsen ◽  
Bram Cornelissen ◽  
Jozef J. M. van der Steen ◽  
Frank van Langevelde ◽  
...  

2015 ◽  
Vol 54 (4) ◽  
pp. 321-327 ◽  
Author(s):  
Ciro Invernizzi ◽  
Ignacio Zefferino ◽  
Estela Santos ◽  
Lucía Sánchez ◽  
Yamandú Mendoza

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1045
Author(s):  
Marian Hýbl ◽  
Andrea Bohatá ◽  
Iva Rádsetoulalová ◽  
Marek Kopecký ◽  
Irena Hoštičková ◽  
...  

Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


Author(s):  
Zheguang Lin ◽  
Yao Qin ◽  
Paul Page ◽  
Shuai Wang ◽  
Li Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document