scholarly journals Adaptive population structure shifts in invasive parasitic mites, Varroa destructor

2021 ◽  
Author(s):  
Arrigo Moro ◽  
Tjeerd Blacquière ◽  
Bjørn Dahle ◽  
Vincent Dietemann ◽  
Yves Le Conte ◽  
...  
2020 ◽  
Author(s):  
Arrigo Moro ◽  
Tjeerd Blacqui re ◽  
Bjorn Dhale ◽  
Vincent Dietemann ◽  
Yves Le Conte ◽  
...  

Author(s):  
Zheguang Lin ◽  
Yao Qin ◽  
Paul Page ◽  
Shuai Wang ◽  
Li Li ◽  
...  

2018 ◽  
Author(s):  
Jing Lei ◽  
Qiushi Liu ◽  
Tatsuhiko Kadowaki

AbstractHoney bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we identified the sensilla-rich sensory organ on the foreleg tarsus. The organ contained four types of sensilla, which may respond to different stimuli based on their morphology. We found the forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors (GRs), as well as proteins involved in ciliary transport. We also found that T. mercedesae and Drosophila melanogaster IR25a and IR93a are functionally equivalent. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.


Author(s):  
Zheguang Lin ◽  
Shuai Wang ◽  
Peter Neumann ◽  
Gongwen Chen ◽  
Paul Page ◽  
...  

AbstractIn a globalized world, parasites are often brought in contact with new potential hosts. When parasites successfully shift host, severe diseases can emerge at a large cost to society. However, the evolutionary processes leading to successful shifts are rarely understood, hindering risk assessment, prevention, or mitigation of their effects. Here, we screened populations of Varroa destructor, an ectoparasitic mite of the honeybee genus Apis, to investigate their genetic structure and reproductive potential on new and original hosts. From the patterns identified, we deduce the factors that influenced the macro- and microevolutionary processes that led to the structure observed. Among the mite variants identified, we found two genetically similar populations that differed in their reproductive abilities and thus in their host specificity. These lineages could interbreed, which represents a threat due to the possible increased virulence of the parasite on its original host. However, interbreeding was unidirectional from the host-shifted to the nonshifted native mites and could thus lead to speciation of the former. The results improve our understanding of the processes affecting the population structure and evolution of this economically important mite genus and suggest that introgression between shifted and nonshifted lineages may endanger the original host.


2010 ◽  
Vol 44 (1) ◽  
pp. e-32-e-37 ◽  
Author(s):  
I. Akimov ◽  
V. Kiryushyn

Ethological Aspects of HoneybeeApis mellifera(Hymenoptera, Apidae), Adaptation to Parasitic MiteVarroa Destructor(Mesostigmata, Varroidae) InvasionSome ethological aspects ofA. melliferaLinnaeus, 1758 (Hymenoptera, Apidae), adaptation to parasiting the miteV. destructorAnderson et Trueman (Mesostigmata, Varroidae) are shown. The basic complexes of behaviour reactions, directed on a fight against the parasitic mites of bees brood at the genusApisare shown, their comparative efficiency under various conditions and evolutional perspective. Possibility of ethological adaptation of honey bee toV. destructorparasiting, direction of selection by this sign and influencing of human on parasitic-host system was discussed. An approach to the selection of bees with the purpose of resistanse to varroosis promoution is proposed.


2010 ◽  
Vol 142 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Geoffrey R. Williams ◽  
Krista Head ◽  
Karen L. Burgher-MacLellan ◽  
Richard E.L. Rogers ◽  
Dave Shutler

AbstractWestern honey bees, Apis mellifera L. (Hymenoptera: Apidae), occur in nearly every region inhabited by man because they provide valuable honey, wax, and pollination services. Many commercial honey bee operations are plagued by economically important parasites; however, beekeepers on the island of Newfoundland, Canada, are in a unique position because of the province of Newfoundland and Labrador’s strict import regulations and geographic isolation. We surveyed about 25% of the island’s approximately 100 managed honey bee colonies. The parasitic mites Varroa destructor Anderson and Trueman (Acari: Varroidae) and Acarapis woodi (Rennie) (Acari: Tarsonemidae) were not detected, whereas Nosema spp. microsporidia were detected in two of four beekeeping operations and in 11 of 23 (48%) colonies (intensity = 482 609 ± 1199 489 (mean ± SD); median intensity = 0). Because V. destructor and A. woodi are important pests that typically require chemical treatments, beekeepers on the island of Newfoundland may be uniquely positioned to market organic honey bee products from colonies that could also be a source of mite-naïve bees for research.


Parasitology ◽  
1971 ◽  
Vol 62 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Clifford Desch ◽  
Robert R. Lebel ◽  
W. B. Nutting ◽  
F. Lukoschus

Demodex carolliae, a parasite of the bat Carollia perspicillata, is described for all stages of its life cycle. The sequences and adaptive features of this life cycle are detailed. Some information is presented on the population structure and the pathogenicity of this species.This research was supported in part by Grant W83–1 to Dr F. Lukoschus from the Netherlands Foundation for the Advancement of Tropical Research (WOTRO).


Sign in / Sign up

Export Citation Format

Share Document