scholarly journals Air–water flows and free-surface profiles on a non-uniform stepped chute

2014 ◽  
Vol 52 (2) ◽  
pp. 253-263 ◽  
Author(s):  
Stefan Felder ◽  
Hubert Chanson
1996 ◽  
Vol 324 ◽  
pp. 393-406 ◽  
Author(s):  
J.-M. Vanden-Broeck ◽  
F. Dias

Symmetric suction flows are computed. The flows are free-surface flows with two stagnation points. The configuration is related to the modelling of wave breaking at the bow of a ship. It is shown that there is a countably infinite number of solutions and that the free-surface profiles are characterized by waves.


2012 ◽  
Vol 695 ◽  
pp. 310-320 ◽  
Author(s):  
P. D. Hicks ◽  
E. V. Ermanyuk ◽  
N. V. Gavrilov ◽  
R. Purvis

AbstractAn experimental and theoretical investigation of the air trapping by a blunt, locally spherical body impacting onto the free surface of water is conducted. In the parameter regime previously studied theoretically by Hicks & Purvis (J. Fluid Mech., vol. 649, 2010, pp. 135–163), excellent agreement between experimental data and theoretical modelling is obtained. Earlier predictions of the radius of the trapped air pocket are confirmed. A boundary element method is used to consider air cushioning of an impact of an axisymmetric body into water. Efficient computational methods are obtained by analytically integrating the boundary integral equation over the azimuthal variable. The resulting numerically computed free-surface profiles predict an annular touchdown region in excellent agreement with the experiments.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaozhou Hu ◽  
Yiyao Jiang ◽  
Daojun Cai

Wave slamming loads on a circular cylinder during water entry and the subsequence submergence process are predicted based on a numerical wave load model. The wave impact problems are analyzed by solving Reynolds-Averaged Navier-Stokes (RANS) equations and VOF equations. A finite volume approach (FV) is employed to implement the discretization of the RANS equations. A two-dimensional numerical wave tank is established to simulate regular ocean waves. The wave slamming problems are investigated by deploying a circular cylinder into waves with a constant vertical velocity. The present numerical method is validated using other numerical or theoretical results in accordance with varying free surface profiles when a circular cylinder sinks in calm water. A numerical example is given to show the submergence process of the circular cylinder in waves, and both free surface profiles and the pressure distributions on the cylinder of different time instants are obtained. Time histories of hydrodynamic load on the cylinder during the submergence process for different wave impact angles, wave heights, and wave periods are obtained, and results are analyzed in detail.


2015 ◽  
Vol 772 ◽  
pp. 272-294 ◽  
Author(s):  
Paul A. Milewski ◽  
Esteban G. Tabak

A methodology is developed for modelling entrainment in two-layer shallow water flows using non-standard conserved quantities, replacing layerwise mass conservation by global energy conservation. Thus, the energy that the standard model would regularly dissipate at internal shocks is instead available to exchange fluid between the layers. Two models are considered for the upper boundary of the flow: a rigid lid and a free surface. The latter provides a selection principle for choosing physically relevant conservation laws among the infinitely many that the former possesses, when the ratio between the baroclinic and barotropic speeds tends to zero. Solutions of the equations are studied analytically and numerically, applied to the lock-exchange problem, and compared with other closures.


2002 ◽  
Vol 29 (1) ◽  
pp. 145-156 ◽  
Author(s):  
H Chanson ◽  
L Toombes

Stepped spillways have been used for about 3500 years. The last few decades have seen the development of new construction materials, design techniques, and applications, for example, embankment overtopping protection systems. Although it is commonly acknowledged that free-surface aeration is significant in stepped chutes, experimental data are scarce, often limited to very steep slopes (α ~ 50°). This paper presents an experimental study conducted in a large-size stepped chute (α = 22°, h = 0.1 m, W = 1 m). Observations demonstrate the existence of a transition flow pattern for intermediate flow rates between nappe and skimming flows. Detailed air–water flow measurements were conducted in both transition and skimming flows, immediately downstream of the inception point of free-surface aeration where uniform equilibrium flow conditions were not achieved. In skimming flows, a complete characterization is developed for the distributions of void fraction, bubble count rate, and velocity, and flow resistance data are compared with other studies. Transition flows exhibit significantly different air–water flow properties. They are highly aerated, requiring the design of comparatively high chute sidewalls.Key words: stepped spillway, air entrainment, two-phase flow properties, skimming flow, transition flow.


Sign in / Sign up

Export Citation Format

Share Document