scholarly journals Role of low-order proper orthogonal decomposition modes and large-scale coherent structures on sediment particle entrainment

Author(s):  
Johannes Schobesberger ◽  
Dominik Worf ◽  
Petr Lichtneger ◽  
Sencer Yücesan ◽  
Christoph Hauer ◽  
...  
2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Rui Gao ◽  
Li Shen ◽  
Kwee-Yan Teh ◽  
Penghui Ge ◽  
Fengnian Zhao ◽  
...  

Proper orthogonal decomposition (POD) offers an approach to quantify cycle-to-cycle variation (CCV) of the flow field inside the internal combustion engine cylinder. POD decomposes instantaneous flow fields (also called snapshots) into a series of orthonormal flow patterns (called POD modes) and the corresponding mode coefficients. The POD modes are rank-ordered by decreasing kinetic energy content, and the low-order, high-energy modes are interpreted as constituting the large-scale coherent flow structure that varies from engine cycle to engine cycle. Various POD-based analysis techniques have thus been proposed to characterize engine flow field CCV using these low-order modes. The validity of such POD-based analyses rests, as a matter of course, on the reliability of the underlying POD results (modes and coefficients). Yet a POD mode can be disproportionately skewed by a single outlier snapshot within a large data set, and an algorithm exists to define and identify such outliers. In this paper, the effects of a candidate outlier snapshot on the results of POD-based conditional averaging and quadruple POD analyses are examined for two sets of crank angle-resolved flow fields on the midtumble plane of an optical engine cylinder recorded by high-speed particle image velocimetry (PIV). The results with and without the candidate outlier are compared and contrasted. In the case of POD-based conditional averaging, the presence of the outlier scrambles the composition of snapshot subsets that define large-scale flow pattern variations, and thus substantially alters the coherent flow structures that are identified; for quadruple POD, the shape of coherent structures and the number of modes to define them are not significantly affected by the outlier.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
A.-M. Shinneeb ◽  
R. Balachandar ◽  
J. D. Bugg

This paper investigates an isothermal free water jet discharging horizontally from a circular nozzle (9mm) into a stationary body of water. The jet exit velocity was 2.5m∕s and the exit Reynolds number was 22,500. The large-scale structures in the far field were investigated by performing a proper orthogonal decomposition (POD) analysis of the velocity field obtained using a particle image velocimetry system. The number of modes used for the POD reconstruction of the velocity fields was selected to recover 40% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the coherent structures. The results clearly reveal that a substantial number of vortical structures of both rotational directions exist in the far-field region of the jet. The number of vortices decreases in the axial direction, while their size increases. The mean circulation magnitude is preserved in the axial direction. The results also indicate that the circulation magnitude is directly proportional to the square of the vortex radius and the constant of proportionality is a function of the axial location.


2020 ◽  
pp. 146808742091724
Author(s):  
Li Shen ◽  
Kwee-Yan Teh ◽  
Penghui Ge ◽  
Fengnian Zhao ◽  
David LS Hung

In-cylinder flow fields and their temporal evolution have strong effect on the combustion dynamics of internal combustion engines. Proper orthogonal decomposition is a statistical tool to analyze these flow fields by decomposing them into flow patterns (known as proper orthogonal decomposition modes) and corresponding coefficients with their contribution to the ensemble flow kinetic energy successively maximized. However, neither of the two prevailing proper orthogonal decomposition approaches satisfactorily describes the temporal behavior of the flow fields. The phase-dependent proper orthogonal decomposition approach is limited to analyzing spatial flow structures at a certain engine phase. The phase-invariant proper orthogonal decomposition approach attempts to account for both spatial and temporal variations, but at the expense of diminished statistical and physical significance. In this article, we seek to understand the temporal behavior of tumble flow fields by analyzing the evolution of low-order phase-dependent proper orthogonal decomposition modes over multiple crank angles. The concept of relevance index is first generalized to enable comparison between two vectorial fields of different sizes. This metric is then used to quantify the directional similarities between the two lowest proper orthogonal decomposition modes obtained at sequential crank angles. The mode shapes are observed to evolve gradually and naturally over most crank angles, but change significantly at certain crank angles during intake. The results indicate that each of the low-order modes features strong velocity fluctuations in different regions of the tumble plane, and different numbers of modes are needed to represent the dominant features of tumble flow at different engine phases. Based on this understanding, we propose to use the partial sum of those proper orthogonal decomposition modes and their coefficients to form a low-order approximation model of the in-cylinder tumble flow, in order to reduce flow field complexity and noise while retaining its major spatial and temporal features.


Author(s):  
Daryl Hickey ◽  
Luc Masset ◽  
Gaetan Kerschen ◽  
Olivier Bru¨ls

Analysing large scale, nonlinear, multiphysical, dynamical structures, by using mathematical modelling and simulation, e.g. Finite Element Modelling (FEM), can be computationally very expensive, especially if the number of degrees-of-freedom is high. This paper develops modal reduction techniques for such nonlinear multiphysical systems. The paper focuses on Proper Orthogonal Decomposition (POD), a multivariate statistical method that obtains a compact representation of a data set by reducing a large number of interdependent variables to a much smaller number of uncorrelated variables. A fully coupled, thermomechanical model consisting of a multilayered, cantilever beam is described and analysed. This linear benchmark is then extended by adding nonlinear radiative heat exchanges between the beam and an enclosing box. The radiative view factors, present in the equations governing the heat fluxes between beam and box elements, are obtained with a ray-tracing method. A reduction procedure is proposed for this fully coupled nonlinear, multiphysical, thermomechanical system. Two alternative approaches to the reduction are investigated, a monolithic approach incorporating a scaling factor to the equations, and a partitioned approach that treats the individual physical modes separately. The paper builds on previous work presented previously by the authors. The results are given for the RMS error between either approach and the original, full solution.


Author(s):  
Shufan Hu ◽  
Chen Zhang ◽  
Hong Liu ◽  
Fuxin Wang

This paper studied the unsteadiness of vortex motion produced by a three-dimensional wing section with horn/ridge ice contamination. Using improved delayed detached eddy simulation method, multi-scale vortex and their associated flow structures were successfully captured. Results have shown a diversity of unsteadiness scales at different time series, including shear layer instability, vortex pairing, co-rotating and breaking up. Proper orthogonal decomposition was then introduced to extract the characteristic vortex shedding modes with scheduling the eigenvalues λi from large to small. The dominate and secondary proper orthogonal decomposition modes under horn ice condition were displayed, which could be illustrated as fluctuations near recirculation zone, and large-scale vortex shedding/reattaching motion, respectively. The proper orthogonal decomposition modal characteristics for ridge ice showed that vortex scales varied from large to small. The trajectory of large-scale vortex reattaching and co-rotating exist simultaneously with the pressure peak and recover, which also verified the association of proper orthogonal decomposition modes with different scales of vortices. Future works would be presented on demonstration of the complex structures and the dynamic features in such flow.


Sign in / Sign up

Export Citation Format

Share Document