TDDFT study of the nonlinear optical properties of the rich d-electron molecular system – iridium/rhodium cluster: the effect of phosphaferrocene

2008 ◽  
Vol 106 (15) ◽  
pp. 1853-1866 ◽  
Author(s):  
Fujun Li ◽  
Kechen Wu
2016 ◽  
Vol 25 (02) ◽  
pp. 1650016 ◽  
Author(s):  
J. L. Paz ◽  
Luis G. Rodríguez ◽  
Juan F. Cárdenas ◽  
Cesar Costa-Vera

Nonlinear optical properties of a two-level molecular system immersed in a thermal bath have been studied in the present work. Solvent effects were explicitly considered by modeling the non-radiative interaction with the solute as a random variable. The innovation of this treatment is that it allows us to take into account the environment, inducing quantum effects not considered by classical treatment. The major contribution of the methodology proposed in this work, is the implementation of an approximant to the Voigt function as a probability distribution, because it allow us to cover a wider range of possible interactions among the solvent and the molecular system by simple changing the parameters [Formula: see text] and [Formula: see text], associated to the variances of the Lorentzian and Gaussian distributions, respectively.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1375
Author(s):  
Quanjiang Li ◽  
Shenghui Chen ◽  
Li Wang ◽  
Yanli Liu ◽  
Di He ◽  
...  

The application of organic conjugated molecular systems to photocatalysis is based on the charge transition with different electronegative substituents and the electron–hole separation behavior of charge transfer under light excitation. In this work, the relationship between the intra-molecular electrical field and molecular second-order nonlinear optical properties is investigated theoretically by the sum-of-states (SOS) method. We use substituents with different electron affinity energy to construct internal electric fields with different properties in similar conjugated systems. The studies of these systems reveal the intra-molecular electric field strength and mode regulation of nonlinear optical coefficients and explain its physical mechanism. The intra-molecular charge recombination caused by the electrostatic potential multipole field of different substituents changes the transition behavior of one-photon, resulting in the enhancement of nonlinear optical properties (second-harmonic generation and sum-frequency coefficient) greater than 104.


2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George

Sign in / Sign up

Export Citation Format

Share Document