Strengthening of the halogen-bonding by an aerogen bond interaction: substitution and cooperative effects in O3Z···NCX···NCY (Z = Ar, Kr, Xe; X = Cl, Br, I; Y = H, F, OH) complexes

2016 ◽  
Vol 114 (14) ◽  
pp. 2177-2186 ◽  
Author(s):  
Mehdi D. Esrafili ◽  
Soheila Asadollahi
2021 ◽  
Author(s):  
Junyong Wu ◽  
Hua Yan ◽  
Hao Chen ◽  
Yanxian Jin ◽  
Aiguo Zhong ◽  
...  

Abstract Except σ-type and π-type halogen bond, a new type of the parallel halogen bond interactions between pyrazine (C4H4N2) and XF (X=F,Cl,Br and I) have been discovered at the MP2/aug-cc-pVTZ level. Through comparing the calculated interaction energy,we can know that the π-type halogen bonding interactions are weaker than the corresponding σ-type halogen bonding interactions, and parallel halogen-bond interactions are weaker than the corresponding π-type halogen bonding interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the σ-type halogen bonding interactions while the parallel halogen-bond interactions are mainly dispersion energy. For the π-type halogen bonding interactions in C4H4N2-XF(X=F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF(X=Br and I) complexes the electrostatic term, induction and dispersion play equally important role in the total attractive interaction.NBO analysis, AIM theory and Conceptual DFT are also be utilized.


2019 ◽  
Vol 123 (40) ◽  
pp. 24793-24806 ◽  
Author(s):  
Cristina Cuautli ◽  
Ramón Hernández-Lamoneda

2014 ◽  
Vol 118 (15) ◽  
pp. 2820-2826 ◽  
Author(s):  
Xin Cindy Yan ◽  
Patric Schyman ◽  
William L. Jorgensen

2020 ◽  
Vol 22 (39) ◽  
pp. 22465-22476
Author(s):  
Dhritabrata Pal ◽  
Sumit Kumar Agrawal ◽  
Amrita Chakraborty ◽  
Shamik Chakraborty

Halogen bonding interaction (X-Bond) is prevalent over hydrogen bonding (H-Bond) interaction in [CH3OH–CCl4] mixtures/clusters: consequence in polar/non-polar mixtures and/or corresponding complexes in atmosphere needs to be investigated.


2017 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized. As in previous studies, we find that the most efficient way to obtain HLCs is to combine (T) from conventional CCSD(T) calculations with explicitly correlated CCSD-F12–MP2-F12 differences.</p>


Sign in / Sign up

Export Citation Format

Share Document