Molecular dynamics simulations of self-diffusion coefficients in binary isotopic Lennard-Jones solutions

1984 ◽  
Vol 52 (2) ◽  
pp. 447-460 ◽  
Author(s):  
Richard J. Bearman ◽  
Donn L. Jolly
2009 ◽  
Vol 113 (31) ◽  
pp. 10641-10649 ◽  
Author(s):  
Seiji Tsuzuki ◽  
Wataru Shinoda ◽  
Hiroaki Saito ◽  
Masuhiro Mikami ◽  
Hiroyuki Tokuda ◽  
...  

2021 ◽  
Author(s):  
Martin P. Lautenschlaeger ◽  
Hans Hasse

It was shown recently that using the two-gradient method, thermal, caloric, and transport properties of fluids under quasi-equilibrium conditions can be determined simultaneously from nonequilibrium molecular dynamics simulations. It is shown here that the influence of shear stresses on these properties can also be studied using the same method. The studied fluid is described by the Lennard-Jones truncated and shifted potential with the cut-off radius r*c = 2.5σ. For a given temperature T and density ρ, the influence of the shear rate on the following fluid properties is determined: pressure p, internal energy u, enthalpy h, isobaric heat capacity cp, thermal expansion coefficient αp, shear viscosity η, and self-diffusion coefficient D. Data for 27 state points in the range of T ∈ [0.7, 8.0] and ρ ∈ [0.3, 1.0] are reported for five different shear rates (γ ̇ ∈ [0.1,1.0]). Correlations for all properties are provided and compared with literature data. An influence of the shear stress on the fluid properties was found only for states with low temperature and high density. The shear-rate dependence is caused by changes in the local structure of the fluid which were also investigated in the present work. A criterion for identifying the regions in which a given shear stress has an influence on the fluid properties was developed. It is based on information on the local structure of the fluid. For the self-diffusivity, shear-induced anisotropic effects were observed and are discussed.


2019 ◽  
Author(s):  
Thiago José Pinheiro dos Santos ◽  
Charlles Abreu ◽  
Bruno Horta ◽  
Frederico W. Tavares

Mass transport coefficients play an important role in process design and in compositional grading of oil reservoirs. As experimental measurements of these properties can be costly and hazardous, Molecular Dynamics simulations emerge as an alternative approach. In this work, we used Molecular Dynamics to calculate the self-diffusion coefficients of methane/n-hexane mixtures at different conditions, in both liquid and supercritical phases. We evaluated how the finite box size and the choice of the force field affect the calculated properties at high pressures. Results show a strong dependency between self-diffusion and the simulation box size. The Yeh-Hummer analytical correction [J. Phys. Chem. B, 108, 15873 (2004)] can attenuate this effect, but sometimes makes the results depart from experimental data due to issues concerning the force fields. We have also found that different all-atom and united-atom models can produce biased results due to caging effects and to different dihedral configurations of the n-alkane.


Sign in / Sign up

Export Citation Format

Share Document