Milk production and urinary nitrogen excretion of dairy cows grazing plantain in early and late lactation

2017 ◽  
Vol 60 (4) ◽  
pp. 470-482 ◽  
Author(s):  
Lisa A. Box ◽  
Grant R. Edwards ◽  
Racheal H. Bryant
Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Pierre Singer ◽  
Itai Bendavid ◽  
Ilana BenArie ◽  
Liran Stadlander ◽  
Ilya Kagan

Abstract Background and aims Combining energy and protein targets during the acute phase of critical illness is challenging. Energy should be provided progressively to reach targets while avoiding overfeeding and ensuring sufficient protein provision. This prospective observational study evaluated the feasibility of achieving protein targets guided by 24-h urinary nitrogen excretion while avoiding overfeeding when administering a high protein-to-energy ratio enteral nutrition (EN) formula. Methods Critically ill adult mechanically ventilated patients with an APACHE II score > 15, SOFA > 4 and without gastrointestinal dysfunction received EN with hypocaloric content for 7 days. Protein need was determined by 24-h urinary nitrogen excretion, up to 1.2 g/kg (Group A, N = 10) or up to 1.5 g/kg (Group B, N = 22). Variables assessed included nitrogen intake, excretion, balance; resting energy expenditure (REE); phase angle (PhA); gastrointestinal tolerance of EN. Results Demographic characteristics of groups were similar. Protein target was achieved using urinary nitrogen excretion measurements. Nitrogen balance worsened in Group A but improved in Group B. Daily protein and calorie intake and balance were significantly increased in Group B compared to Group A. REE was correlated to PhA measurements. Gastric tolerance of EN was good. Conclusions Achieving the protein target using urinary nitrogen loss up to 1.5 g/kg/day was feasible in this hypercatabolic population. Reaching a higher protein and calorie target did not induce higher nitrogen excretion and was associated with improved nitrogen balance and a better energy intake without overfeeding. PhA appears to be related to REE and may reflect metabolism level, suggestive of a new phenotype for nutritional status. Trial registration 0795-18-RMC.


1976 ◽  
Vol 27 (1) ◽  
pp. 139 ◽  
Author(s):  
JG Mulholland ◽  
JB Coombe ◽  
WR McManus

Individually penned Border Leicester x Merino wethers, aged 11 months, were fed ad lib. for 16 weeks on a basal ration of ground, pelleted oat straw, urea and minerals, supplemented with 0, 5, 10, 15, 20, 30 or 40% starch. The diets contained equal percentages of nitrogen and minerals. Dry matter intake reached a maximum of 2000 g/day with 30% starch; above this starch level, digestive disturbances were observed. Organic matter digestibility was increased by the addition of starch, but cellulose digestibility was depressed by as much as 18 units with the addition of 30% starch. Up to 10% the starch level had little effect on cellulose digestibility. Liveweight change was significantly correlated with digestible organic matter intake, mean daily weight gains varying from 22 g with no starch to 104 g with 30% starch. However, a large percentage of the liveweight gain was as total body water, and body energy storage increased appreciably only when the diet contained at least 20% starch. The inclusion of 5% starch slightly depressed both intake and liveweight gain. Daily clean wool production was significantly increased at starch levels higher than 20% and ranged from 5.3 to 7.5 g/day with 0 and 40% starch respectively. Increasing levels of starch had little effect on apparent nitrogen digestibility, but resulted in a substantial increase in nitrogen retention through a reduction in urinary nitrogen excretion. Serum urea levels fell from a mean of 42 mg/100 ml during the first week to 31 mg/100 ml during subsequent periods, with no significant differences between diets. With the general exception of potassium, mineral balances were positive or close to zero throughout the experiment.


1976 ◽  
Vol 50 (5) ◽  
pp. 393-399 ◽  
Author(s):  
J. H. Wedge ◽  
R. De Campos ◽  
A. Kerr ◽  
R. Smith ◽  
Rose Farrell ◽  
...  

1. Venous blood concentrations of the branched-chain amino acids, valine, leucine and isoleucine, and urinary nitrogen excretion have been measured in sixteen adult males, from 2 h to 7 days after injury, and in four adults after elective skin grafts. 2. In the injured group the concentrations of these amino acids rose significantly 24 h after injury and had doubled at 4 days and remained high; in contrast the skin-graft patients showed no significant change. 3. In those injured patients with initial hyperketonaemia, defined as more than 0·2 mmol/l, the increase in concentrations of branched-chain amino acids at the fourth and seventh days after injury was significantly less than in those with normoketonaemia, and was accompanied by lower urinary nitrogen excretion throughout the whole period. 4. It is suggested that the changes in the concentration of branched-chain amino acids after injury indicate decreased uptake by muscle or excessive release due to an imbalance between protein synthesis and protein catabolism in this tissue.


Sign in / Sign up

Export Citation Format

Share Document