urea concentration
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 44)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 41 ◽  
pp. 096032712110615
Author(s):  
Karina Sommerfeld-Klatta ◽  
Magdalena Łukasik-Głębocka ◽  
Barbara Zielińska-Psuja

Ethylene glycol (EG), in addition to its neurotoxic and nephrotoxic effects, evokes oxidative stress. The aim of this study was to assess the influence of the ethylene glycol on the biochemical indicators and oxidoreductive balance of patients treated for acute poisoning. The total study group consisted of 56 persons including 26 alcoholics who took EG as a substitute for ethyl alcohol in the course of alcohol dependence syndrome and 30 controls. Severity of poisoning, results of acid-base parameters, biochemical, and toxicological tests as well as biomarkers of the oxidative stress in blood were analyzed during the patients’ hospitalization. The key issue was to assess the oxidative stress and biochemical disturbances caused by EG and the type of treatment applied in the course of poisoning. Significant changes in some parameters were found both at time of diagnosis and after treatment initiation (ethanol as an antidote and hemodialysis). The most important differences included the activity of hepatic parameters (aspartate aminotransferase, AST) and oxidative stress markers like catalase (CAT); correlation of the lipid peroxidation products level (TBARS) with urea concentration has been shown. On the last day of the hospitalization, in some cases, the mutual correlation between the evaluated markers were observed, for example, between alanine transaminase (ALT) and glutathione reductase (GR), and urea concentration and glutathione level (GSH/GSSG). The concentration of ions (H+) had a major impact on the oxidoreductive balance, correlating with the elevated GR and GSH/GSSG levels.


2021 ◽  
Author(s):  
Gonzalo Cantalapiedra-Hijar ◽  
Isabelle Morel ◽  
Bernard Sepchat ◽  
Céline Chantelauze ◽  
Gemma A. Miller ◽  
...  

Abstract The objective of this study was to test two candidate biomarkers of feed efficiency in growing cattle. A database was built using performance data from 13 trials conducted with growing heifers, steers and young bulls and testing 34 dietary treatments. The database included 769 individual records for animal performance and laboratory data for N isotopic discrimination measured in plasma or muscle (Δ15Nanimal-diet; n = 749) and plasma urea concentration (n = 659). Feed conversion efficiency (FCE) and residual feed intake (RFI) criteria were calculated for a duration ranging between 56 and 259 d, depending on the trial. For FCE prediction, mixed models included the random effects of study, diet within-study and pen within-study (i.e. contemporary group; CG) allowing these effects to be progressively excluded from the relationship. For RFI prediction, simple linear regressions were tested with the CG effect removed from biomarker values before analysis. Better models were obtained with Δ15Nanimal-diet compared to plasma urea concentration, irrespective of using mean or individual values and regardless of the feed efficiency criterion. Prediction error (0.027 kg/kg) from mixed-effect models using mean FCE and Δ15Nanimal-diet values would allow discrimination of 2 dietary treatments or production conditions in terms of FCE if they differ by more than 0.10 kg/kg. The Δ15Nanimal-diet values showed a negative and significant (P<0.001) relationship with FCE at the individual level and results highlighted that it is possible to significantly discriminate two animals randomly selected from the same CG if they differ by at least 0.06 kg/kg FCE. In addition, the top 20% highest and lowest animals within-CG in terms of RFI and FCE (extreme animals) showed significant (P<0.001) differences in Δ15Nanimal-diet values, while only extreme FCE animals could be discriminated when using plasma urea concentrations (P=0.002). No gain in feed efficiency prediction was observed when combining candidate biomarkers. However for FCE, when average daily gain data was combined with Δ15Nanimal-diet, the prediction at the individual level was strengthened compared to using only single predictors. Our findings confirm that Δ15Nanimal-diet may be useful to form groups of animals for precision feeding. Further studies are warranted, however, to evaluate the usefulness of this promising biomarker for genetic selection.


Molekul ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 92
Author(s):  
Zusfahair Zusfahair ◽  
Amin Fatoni ◽  
Dian Riana Ningsih ◽  
Anung Riapanitra

The determination of heavy metal concentrations has been carried out using sophisticated instruments, and therefore a simple and reliable alternative method is needed as a comparison. The study aimed to determine Cu and Pb concentration of standard solution using the urease activity inhibition method of Durio zibethinus L.  seeds.  The research started with urease extraction from Durio D. zibethinus L. seeds. The activity of the obtained extract was determined using the Nessler method. The optimum substrate concentration was also determined. Urease activity inhibition was carried out using various metal solution concentrations, which continued by plotting a log graph of urea concentration vs. %inhibition. The obtained graph would then determine the metal concentration in a synthetic water sample. The data was then compared to the measurement, determined by the Atomic Absorption Spectrophotometry (AAS) method. Results of the study showed that the urease activity of D. zibethinus L.seeds was 296.774 U/mL. Urease activity was optimum at a urea concentration of 0.3 M. The comparison Cu, and Pb concentration determination using the urease inhibitory activity and AAS methods showed no significant difference at 95% confidence level. This research showed that urease of D. zibethinus L. seed could be used to determine Cu and Pb's concentration based on its inhibiting activity.


2021 ◽  
Vol 248 ◽  
pp. 104483
Author(s):  
Taiana Cortez de Souza ◽  
Tatiana Cortez de Souza ◽  
Gregorí Alberto Rovadoscki ◽  
Luiz Lehmann Coutinho ◽  
Gerson Barreto Mourão ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3450
Author(s):  
Maria de Lourdes S. Vasconcellos ◽  
Luiz Ricardo G. Silva ◽  
Chung-Seop Lee ◽  
Ana Sofia Fajardo ◽  
Sergi Garcia-Segura ◽  
...  

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated solution for online monitoring if sensors can overcome the major barrier associated with long-term stability. Mixed metal oxides have shown excellent stability in environmental conditions with long lasting operational lives. However, these materials have been barely explored for sensing applications. This work presents a proof of concept that demonstrates the applicability of an indirect electroanalytical quantification method of urea. The use of Ti/RuO2-TiO2-SnO2 dimensional stable anode (DSA®) can provide accurate and sensitive quantification of urea in aqueous samples exploiting the excellent catalytic properties of DSA® on the electrogeneration of active chlorine species. The cathodic reduction of accumulated HClO/ClO− from anodic electrogeneration presented a direct relationship with urea concentration. This novel method can allow urea quantification with a competitive LOD of 1.83 × 10−6 mol L−1 within a linear range of 6.66 × 10−6 to 3.33 × 10−4 mol L−1 of urea concentration.


2021 ◽  
Vol 770 ◽  
pp. 138431
Author(s):  
D.P. Mali ◽  
R.T. Patil ◽  
A.S. Patil ◽  
V.J. Fulari

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 799
Author(s):  
João Micael Leça ◽  
Vanda Pereira ◽  
Andreia Miranda ◽  
José Luis Vilchez ◽  
Manuel Malfeito-Ferreira ◽  
...  

The impact of selected non-Saccharomyces yeasts on the occurrence of ethyl carbamate (EC) was evaluated. Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans and Pichia kluyveri isolated from Madeira Island vineyards were inoculated in Tinta Negra musts. Urea, citrulline (Cit) and arginine (Arg) were quantified when the density of musts attained the levels to obtain sweet (1052 ± 5 g/L) and dry (1022 ± 4 g/L) Madeira wines. The urea concentration varied between 1.3 and 5.3 mg/L, Cit from 10.6 to 15.1 mg/L and Arg between 687 and 959 mg/L. P. terricola and S. bacillaris generated lower levels of urea (<2.5 mg/L), Cit (<11.0 mg/L) and Arg (<845.6 mg/L). The five resulting fortified wines, individually fermented by the selected non-Saccharomyces yeast, were exposed to laboratory-accelerated aging at 70 °C for 1 month. From the studied yeasts, P. terricola and S. bacillaris revealed a lower potential to form EC (<100 µg/L); therefore, both yeasts can be a useful tool for its mitigation in wines.


Sign in / Sign up

Export Citation Format

Share Document