Phosphorus transport in subsurface flow from a stony soil under irrigated and non-irrigated lucerne

Author(s):  
Colin W. Gray ◽  
Richard W. McDowell ◽  
Scott L. Graham ◽  
John E. Hunt ◽  
Johannes Laubach ◽  
...  
2020 ◽  
Author(s):  
Michael Rinderer ◽  
Jaane Krüger ◽  
Friederike Lang ◽  
Heike Puhlmann ◽  
Markus Weiler

Abstract. Phosphorus (P) is a limiting factor of primary productivity in most forest ecosystems but little is known about retention within and losses of P from forests. Subsurface flow (SSF) is one of the important pathways of P export but few attempts exist to quantify it. We present results of sprinkling experiments with ca. 150 mm, 2H labelled, total rainfall conducted at 200 m2 plots on hillslopes with slopes between 14° and 28° at three beech forests in Germany in summer and spring. We aimed at quantifying vertical and lateral SSF and associated P transport in the forest floor, the mineral soil and the saprolite. The study sites differed regarding soil depth, skeleton content and soil P stocks (between 678 g/m2 and 209 g/m2, in the first 1 m soil depth). Vertical SSF in the mineral soil and in the saprolite was at least two orders of magnitude larger than lateral SSF in the same depth. Vertical and lateral SSF consisted mainly of pre-event water that was replaced by sprinkling water (piston flow mechanism). Short spikes of event water at the beginning of the experiment at two of the sites with high skeleton content indicate that preferential flow occurred in parallel to matrix flow. We observed a significant decrease in P concentrations in SSF with increasing soil depth suggesting effective retention of P by adsorption to soil particles in all three forest ecosystems. Higher P concentrations in SSF at the beginning of the experiments indicate nutrient flushing but P concentrations were nearly constant thereafter despite strong increase in SSF. P concentrations did also not change significantly with increasing share of event water in SSF. These chemostatic transport conditions suggests that P mobilization rates were similar to transport rates in both, P-rich and P-poor sites. The observed first flush effect implies that P export by SSF will increase as rainfall events with high transport capacity are predicted to occur more frequent under future climatic conditions.


2018 ◽  
Author(s):  
Jakob Sohrt ◽  
Heike Puhlmann ◽  
Markus Weiler

Abstract. This study is concerned with the transport of Phosphorus (P) with lateral subsurface flow in the organic layer and topsoil of three forested headwater sites in Germany. Sampling frequency was set proportional to the incident flow rate in high temporal resolution. With this approach we want to investigate intra-event dynamics of P transport in lateral subsurface flow to establish initial process understanding about this potentially relevant pathway of P loss in forested hillslopes. With the organic layer being an important transfer site in the P cycle of temperate forests, availability and transportability of P in short timescales may reveal details about the overall balance of P in theses ecosystems. Our results demonstrate that P concentrations in lateral flow are highly variable within and in between distinct flow events as well as among our study sites. To determine possible controls of the P transport we constructed multiple linear models of the P concentration in lateral flow as a function of site specific environmental datasets. Site affiliation was responsible for more than half of total explained variability regarding P concentration in lateral flow, followed by flow rate, electric conductivity of subsurface lateral flow


2020 ◽  
Vol 586 ◽  
pp. 124861
Author(s):  
Wei Wang ◽  
Lin Sun ◽  
Yanhui Wang ◽  
Yanbing Wang ◽  
Pengtao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document