Methyl-hydroxylation and subsequent oxidation to produce carboxylic acid is the major metabolic pathway of tolbutamide in chimeric TK-NOG mice transplanted with human hepatocytes

Xenobiotica ◽  
2021 ◽  
pp. 1-8
Author(s):  
Shotaro Uehara ◽  
Nao Yoneda ◽  
Yuichiro Higuchi ◽  
Hiroshi Yamazaki ◽  
Hiroshi Suemizu
2017 ◽  
Vol 63 (11) ◽  
pp. 1753-1763 ◽  
Author(s):  
Xingxing Diao ◽  
Jeremy Carlier ◽  
Mingshe Zhu ◽  
Marilyn A Huestis

Abstract BACKGROUND In 2014, 2 novel synthetic cannabinoids, MN-18 and its 5-fluoro analog, 5F-MN-18, were first identified in an ongoing survey of novel psychoactive substances in Japan. In vitro pharmacological assays revealed that MN-18 and 5F-MN-18 displayed high binding affinities to human CB1 and CB2 receptors, with Ki being 1.65–3.86 nmol/L. MN-18 and 5F-MN-18 were scheduled in Japan and some other countries in 2014. Despite increasing prevalence, no human metabolism data are currently available, making it challenging for forensic laboratories to confirm intake of MN-18 or 5F-MN-18. METHODS We incubated 10 μmol/L of MN-18 and 5F-MN-18 in human hepatocytes for 3 h and analyzed the samples on a TripleTOF 5600+ high-resolution mass spectrometer to identify appropriate marker metabolites. Data were acquired via full scan and information-dependent acquisition-triggered product ion scans with mass defect filter. RESULTS In total, 13 MN-18 metabolites were detected, with the top 3 abundant metabolites being 1-pentyl-1H-indazole-3-carboxylic acid, pentyl-carbonylated MN-18, and naphthalene-hydroxylated MN-18. For 5F-MN-18, 20 metabolites were observed, with the top 3 abundant metabolites being 5′-OH-MN-18, MN-18 pentanoic acid, and 1-(5-fluoropentyl)-1H-indazole-3-carboxylic acid. CONCLUSIONS We have characterized MN-18 and 5F-MN-18 metabolism with human hepatocytes and high-resolution mass spectrometry, and we recommend characteristic major metabolites for clinical and forensic laboratories to identify MN-18 and 5F-MN-18 intake and link observed adverse events to these novel synthetic cannabinoids.


Toxicology ◽  
1998 ◽  
Vol 131 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Roger G. Ulrich ◽  
James A. Bacon ◽  
Clay T. Cramer ◽  
Diane K. Petrella ◽  
Elena L. Sun ◽  
...  

1979 ◽  
Vol 43 (11) ◽  
pp. 2373-2374 ◽  
Author(s):  
Konosuke Sano ◽  
Chikahiko Eguchi ◽  
Naohiko Yasuda ◽  
Koji Mitsugi

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Qian Ni ◽  
Feng Qi Wan ◽  
Yu Hong Jing ◽  
Xiang Yu Dong ◽  
You Cheng Zhang

In this study, we aimed to investigate the effect of acute and chronic exposure to HA on the aerobic and anaerobic metabolism in liver by determining the hepatic levels of ICDH and ATP. Lactate levels in liver and blood were also examined. Rats were exposed to an altitude of 4,300 m for 30 days, and those without HA exposure were used as controls. We observed an increased expression of liver ICDH following acute exposure (days 1, 3, and 7), whereas the liver ATP concentration was reduced on day 1. No changes in the hepatic expression of ICDH and ATP were found in rats chronically exposed to HA. Lactate concentrations of liver and blood did not show any significant changes following HA exposure. Thus, aerobic metabolism may be the major metabolic pathway in response to HA hypoxia in order to acclimatize themselves to the stressful environments.


Sign in / Sign up

Export Citation Format

Share Document