Preparation, Characterization, and Drug-Release Behaviors of a pH-Sensitive Composite Hydrogel Bead Based on Guar Gum, Attapulgite, and Sodium Alginate

2013 ◽  
Vol 62 (7) ◽  
pp. 369-376 ◽  
Author(s):  
Huixia Yang ◽  
Wenbo Wang ◽  
Junping Zhang ◽  
Aiqin Wang
2021 ◽  
Vol 146 ◽  
pp. 110267
Author(s):  
Chunqing Niu ◽  
Xinyu Liu ◽  
Yiyu Wang ◽  
Xiang Li ◽  
Jian Shi

2019 ◽  
Author(s):  
Fatimah. A. Agili ◽  
Sahera. F. Mohamed

AbstractThe pH-sensitive nanocomposite composed of sodium alginate/ Pectin/ Tannic acid – silver SA/Pec/TA-Ag was prepared using microwave irradiation and employed as a carrier for Propranolol drug. Physico-chemical characteristics of the prepared systems using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), Dynamic light Scattering instrument (DLS), and Energy Dispersive X-Ray Analysis (EDX). The percentage drug release was 96% at pH 7.4 within 420 min. The drug release data was fitted into different kinetic models included zero order, First order, Higuchi and Ritger-Peppas model. The release mechanism is non-Fickian character where it controlled by diffusion and relaxation of polymer chains. It can be concluded that SA/Pec/TA-Ag nanocomposite is candidate for the oral drug carrier specific for intestinal system and has stability against gastric fluid.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 79-85
Author(s):  
Elangovan Nagarajan ◽  
B Rama ◽  
M Swetha ◽  
G.S Sharma ◽  
L Jyothi Rani ◽  
...  

In the present work, double walled microspheres of Tamoxifen (antiestrogenic drug) using Sodium alginate, Hydroxy propyl methyl cellulose (HPMC) K100,Guar gum, Xanthun gum were formulated to deliver Tamoxifen (TMX) through  oral route to treat breast cancer patients. Details regarding the preparation and evaluation of the formulations have been discussed in results. From the study following conclusions could be drawn. The results of this investigation indicate that Ion gelation method can be successfully employed to fabricate TMX microspheres. FT-IR spectra of the physical mixture revealed that the drug is compatible with the polymers and copolymer used. Microspheres containing sodium alginate along with HPMC in 1:1 ratio had a least size range of 610µm. Increase in the polymer concentration led to increase in % Yield, % Drug entrapment efficiency, Particle size. The  invitro drug release decreased with increase in the polymer and copolymer concentration. Among all formulations F7 shows Maximum drug release in 12 th hr  when compared with other formulations. Analysis of drug release mechanism showed that the drug release from the formulations followed the Non fickian diffusion mechanism and follows zero order kinectics. Based on the results of evaluation tests formulation coded F7 was concluded as best formulation. Keywords : Tamoxifen, sodium alginate, HPMC, Microspheres, Diffusion, Copolymers,  Entrapment efficiency.


2019 ◽  
Vol 28 (8-9) ◽  
pp. 598-608
Author(s):  
Fatimah A Agili ◽  
Sahera FM Aly

A pH-sensitive nanocomposite formed from sodium alginate (SA)/pectin (Pec)/tannic acid (TA)–silver (Ag) was developed using microwave irradiation and it was applied as a carrier for propranolol drug. TA acts as a cross-linker and a reducing agent for Ag ions. Physicochemical characteristics of the fabricated system using Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, high-resolution transmission electron microscope, dynamic light scattering instrument, and energy dispersive X-ray analysis. The swelling percent and the drug release were observed to be pH-sensitive. The occurrence of Ag nanoparticles in the network enhances the drug release that is 96% at pH 7.4 within 420 min. The drug release data were adjusted into different kinetic models involved zero order, first order, Higuchi, and Ritger–Peppas models. The release mechanism is a non-Fickian character where it controls by diffusion and relaxation of polymer chains. It can be concluded that SA/Pec/TA-Ag nanocomposite is a candidate for the oral drug carrier specific for the intestinal system and has ability against the gastric fluid.


Sign in / Sign up

Export Citation Format

Share Document