On Cleft Extensions of the Tensor Product of Two Hopf Algebras

2013 ◽  
Vol 41 (11) ◽  
pp. 4299-4332
Author(s):  
Ningyuan Yao ◽  
Xiaolong Jiang
Author(s):  
Masahico Saito ◽  
Emanuele Zappala

A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.


Author(s):  
Jorge A. Guccione ◽  
Juan J. Guccione

We compare the restriction to the context of weak Hopf algebras of the notion of crossed product with a Hopf algebroid introduced in [Cleft extensions of Hopf algebroids, Appl. Categor. Struct. 14(5–6) (2006) 431–469] with the notion of crossed product with a weak Hopf algebra introduced in [Crossed products for weak Hopf algebras with coalgebra splitting, J. Algebra 281(2) (2004) 731–752].


2020 ◽  
Vol 547 ◽  
pp. 668-710
Author(s):  
Jorge A. Guccione ◽  
Juan J. Guccione ◽  
Christian Valqui

2014 ◽  
Vol 25 (05) ◽  
pp. 1450037 ◽  
Author(s):  
Gabriella Böhm

This is a sequel paper of [Weak multiplier bialgebras, Trans. Amer. Math. Soc., in press] in which we study the comodules over a regular weak multiplier bialgebra over a field, with a full comultiplication. Replacing the usual notion of coassociative coaction over a (weak) bialgebra, a comodule is defined via a pair of compatible linear maps. Both the total algebra and the base (co)algebra of a regular weak multiplier bialgebra with a full comultiplication are shown to carry comodule structures. Kahng and Van Daele's integrals [The Larson–Sweedler theorem for weak multiplier Hopf algebras, in preparation] are interpreted as comodule maps from the total to the base algebra. Generalizing the counitality of a comodule to the multiplier setting, we consider the particular class of so-called full comodules. They are shown to carry bi(co)module structures over the base (co)algebra and constitute a monoidal category via the (co)module tensor product over the base (co)algebra. If a regular weak multiplier bialgebra with a full comultiplication possesses an antipode, then finite-dimensional full comodules are shown to possess duals in the monoidal category of full comodules. Hopf modules are introduced over regular weak multiplier bialgebras with a full comultiplication. Whenever there is an antipode, the Fundamental Theorem of Hopf Modules is proven. It asserts that the category of Hopf modules is equivalent to the category of firm modules over the base algebra.


2016 ◽  
Vol 45 (7) ◽  
pp. 3166-3205
Author(s):  
Mauricio Da Rocha ◽  
Jorge A. Guccione ◽  
J. Guccione

1998 ◽  
Vol 5 (3) ◽  
pp. 263-276
Author(s):  
J. L. Loday ◽  
T. Pirashvili

Abstract We equip the category of linear maps of vector spaces with a tensor product which makes it suitable for various constructions related to Leibniz algebras. In particular, a Leibniz algebra becomes a Lie object in and the universal enveloping algebra functor UL from Leibniz algebras to associative algebras factors through the category of cocommutative Hopf algebras in . This enables us to prove a Milnor–Moore type theorem for Leibniz algebras.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

International audience We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras. Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.


Sign in / Sign up

Export Citation Format

Share Document