scholarly journals Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

International audience We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras. Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.

10.37236/438 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

We analyze the structure of the algebra $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action" of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. Résumé. Nous analysons la structure de l'algèbre $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions", on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Carolina Benedetti ◽  
Joshua Hallam ◽  
John Machacek

International audience We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanley’s $(-1)$-color theorem. Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans multiplicité pour son antipode. On obtient ensuite une famille d'algèbres de Hopf combinatoires en définissant une famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donnent lieu à des fonctions symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-$f$. Nousallons également utiliser des caractères pour donner une généralisation du théorème $(-1)$ de Stanley.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher J. Brooks ◽  
Abraham Mart\'ın Campo ◽  
Frank Sottile

International audience We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l'espace projective contient le groupe alterné. En utilisant un critère de Vakil et l'argument de position spéciale due à Schubert, ce résultat se déduit d'une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la plupart des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restants, on utilise le fait que ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des $\mathfrak{sl}_2\mathbb{C}$-modules. En interprétant le produit tensoriel comme l'action de certaines matrices de Toeplitz commutant entre elles, et en utilisant de l'analyse spectrale et les séries de Fourier, on réécrit l’inégalité comme la positivité d'une intégrale. L’inégalité sera établie en estimant cette intégrale.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Marcelo Aguiar ◽  
Carlos André ◽  
Carolina Benedetti ◽  
Nantel Bergeron ◽  
Zhi Chen ◽  
...  

International audience We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras. Nous montrons que deux structures en apparence bien différentes peuvent être identifiées: les super-caractères, qui sont un outil commode pour faire de l'analyse de Fourier sur le groupe des matrices unipotentes triangulaires supérieures à coefficients dans un corps fini, et l'anneau des fonctions symétriques en variables non-commutatives. Ces deux structures sont des algèbres de Hopf isomorphes. Cette identification permet de traduire dans une structure les dévelopements conçus pour l'autre, et suggère de nombreux exemples dans le domaine nouveau des algèbres de Hopf combinatoires.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Arthur Lubovsky

International audience Kirillov-Reshetikhin (KR) crystals are colored directed graphs encoding the structure of certain finite-dimensional representations of affine Lie algebras. A tensor product of column shape KR crystals has recently been realized in a uniform way, for all untwisted affine types, in terms of the quantum alcove model. We enhance this model by using it to give a uniform realization of the combinatorial $R$-matrix, i.e., the unique affine crystal isomorphism permuting factors in a tensor product of KR crystals. In other words, we are generalizing to all Lie types Schützenberger’s sliding game (jeu de taquin) for Young tableaux, which realizes the combinatorial $R$-matrix in type $A$. We also show that the quantum alcove model does not depend on the choice of a sequence of alcoves Les cristaux de Kirillov–Reshetikhin (KR) sont des graphes orientés avec des arêtes étiquetées qui encodent certaines représentations de dimension finie des algèbres de Lie affines. Les produits tensoriels des cristaux KR de type colonne ont été récemment réalisés de manière uniforme, pour tous les types affines symétriques, en termes du modèle des alcôves quantique. Nous enrichissons ce modèle en l’utilisant pour donner une réalisation uniforme de la $R$-matrice combinatoire, c’est à dire, l’isomorphisme des cristaux affines unique quit permute les facteurs dans un produit tensoriel des cristaux KR. En d’autres termes, nous généralisons pour tous les types de Lie le jeu de taquin de Schützenberger sur les tableaux de Young, qui réalise la $R$-matrice combinatoire dans le type $A$. Nous montrons aussi que le modèle des alcôves quantique ne dépend pas du choix d’une suite d’alcôves.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Peter Bürgisser ◽  
Christian Ikenmeyer

International audience Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the symmetric group $S_n$. They can also be interpreted as the coefficients of the expansion of the internal product of two Schur polynomials in the basis of Schur polynomials. We show that the problem $\mathrm{KRONCOEFF}$ of computing Kronecker coefficients is very difficult. More specifically, we prove that $\mathrm{KRONCOEFF}$ is #$\mathrm{P}$-hard and contained in the complexity class $\mathrm{GapP}$. Formally, this means that the existence of a polynomial time algorithm for $\mathrm{KRONCOEFF}$ is equivalent to the existence of a polynomial time algorithm for evaluating permanents. Les coefficients de Kronecker sont les multiplicités dans la décomposition du produit tensoriel de deux représentations irréductibles du groupe symétrique. On peut aussi les voir comme les coefficients du développement du produit interne des polynômes de Schur. Nous montrons que le problème $\mathrm{KRONCOEFF}$ de calculer les coefficients de Kronecker est très difficile. Plus précisément, nous prouvons que $\mathrm{KRONCOEFF}$ est #$\mathrm{P}$-dur et que $\mathrm{KRONCOEFF}$ est dans la classe de complexité $\mathrm{GapP}$. Cela veut dire qu'il existe un algorithme pour $\mathrm{KRONCOEFF}$ s'exécutant en temps polynomial si et seulement s'il existe un algorithme pour l'évaluation du permanent s'exécutant en temps polynomial.


2001 ◽  
Vol 44 (1) ◽  
pp. 19-26 ◽  
Author(s):  
M. D. Crossley ◽  
Sarah Whitehouse

AbstractLet $A$ be a graded, commutative Hopf algebra. We study an action of the symmetric group $\sSi_n$ on the tensor product of $n-1$ copies of $A$; this action was introduced by the second author in 1 and is relevant to the study of commutativity conditions on ring spectra in stable homotopy theory 2.We show that for a certain class of Hopf algebras the cohomology ring $H^*(\sSi_n;A^{\otimes n-1})$ is independent of the coproduct provided $n$ and $(n-2)!$ are invertible in the ground ring. With the simplest coproduct structure, the group action becomes particularly tractable and we discuss the implications this has for computations.AMS 2000 Mathematics subject classification: Primary 16W30; 57T05; 20C30; 20J06; 55S25


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Stephen Lewis ◽  
Nathaniel Thiem

International audience The standard supercharacter theory of the finite unipotent upper-triangular matrices $U_n(q)$ gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of $U_m(q) \subseteq U_n(q)$ for $m \leq n$ lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of $U_n(q)$ is a nonnegative integer linear combination of supercharacters of $U_m(q)$ (in fact, it is polynomial in $q$). In a first step towards understanding the combinatorics of coefficients in the branching rules of the supercharacters of $U_n(q)$, this paper characterizes when a given coefficient is nonzero in the restriction of a supercharacter and the tensor product of two supercharacters. These conditions are given uniformly in terms of complete matchings in bipartite graphs. La théorie standard des supercaractères des matrices triangulaires supérieures unipotentes finies $U_n(q)$ donne lieu à une merveilleuse combinatoire basée sur les partitions d'ensembles. Comme avec la théorie des représentations du groupe symétrique, Les plongements $U_m(q) \subseteq U_n(q)$ pour $m \leq n$ mènent aux règles de branchement. Diaconis et Isaacs ont montré que la restriction d'un supercaractère de $U_n(q)$ est une combinaison linéaire des supercaractères de $U_m(q)$ avec des coefficients entiers non négatifs (en fait, elle est polynomiale en $q$). Dans une première étape vers la compréhension de la combinatoire des coefficients dans les règles de branchement des supercaractères de $U_n(q)$, ce texte caractérise les coefficients non nuls dans la restriction d'un supercaractère et dans le produit des tenseurs de deux supercaractères. Ces conditions sont données uniformément en termes des couplages complets dans des graphes bipartis.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jean-Baptiste Priez

International audience In a first part, we formalize the construction of combinatorial Hopf algebras from plactic-like monoids using polynomial realizations. Thank to this construction we reveal a lattice structure on those combinatorial Hopf algebras. As an application, we construct a new combinatorial Hopf algebra on binary trees with multiplicities and use it to prove a hook length formula for those trees. Dans une première partie, nous formalisons la construction d’algèbres de Hopf combinatoires à partir d’une réalisation polynomiale et de monoïdes de type monoïde plaxique. Grâce à cette construction, nous mettons à jour une structure de treillis sur ces algèbres de Hopf combinatoires. Comme application, nous construisons une nouvelle algèbre de Hopf sur des arbres binaires à multiplicités et on l’utilise pour démontrer une formule des équerressur ces arbres.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Peter Bürgisser ◽  
Christian Ikenmeyer

International audience Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group $\mathrm{GL}(n,\mathbb{C})$. They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time. This follows by combining the saturation property of Littlewood-Richardson coefficients (shown by Knutson and Tao 1999) with the well-known fact that linear optimization is solvable in polynomial time. We design an explicit $\textit{combinatorial}$ polynomial time algorithm for deciding the positivity of Littlewood-Richardson coefficients. This algorithm is highly adapted to the problem and it is based on ideas from the theory of optimizing flows in networks. Les coefficients de Littlewood-Richardson sont les multiplicités dans la décomposition du produit tensoriel de deux représentations irréductibles du groupe général linéaire $\mathrm{GL}(n,\mathbb{C})$. Ces coefficients ont plusieurs interprétations en combinatoire, en théorie des représentations et en géométrie. Mulmuley et Sohoni ont observé qu'on peut décider si un coefficient de Littlewood-Richardson est positif en temps polynomial. C'est une conséquence de la propriété de saturation des coefficients de Littlewood-Richardson (démontrée par Knutson et Tao en 1999) et le fait bien connu que la programmation linéaire est possible en temps polynomial. Nous décrivons un algorithme $\textit{combinatoire}$ pour décider si un coefficient de Littlewood-Richardson est positif. Cet algorithme est bien adapté au problème et il utilise des idées de la théorie des flots maximaux sur des réseaux.


Sign in / Sign up

Export Citation Format

Share Document