scholarly journals Hopf algebras, distributive (Laplace) pairings and hash products: a unified approach to tensor product decompositions of group characters

2014 ◽  
Vol 47 (20) ◽  
pp. 205201 ◽  
Author(s):  
Bertfried Fauser ◽  
Peter D Jarvis ◽  
Ronald C King
Author(s):  
Masahico Saito ◽  
Emanuele Zappala

A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.


2014 ◽  
Vol 25 (05) ◽  
pp. 1450037 ◽  
Author(s):  
Gabriella Böhm

This is a sequel paper of [Weak multiplier bialgebras, Trans. Amer. Math. Soc., in press] in which we study the comodules over a regular weak multiplier bialgebra over a field, with a full comultiplication. Replacing the usual notion of coassociative coaction over a (weak) bialgebra, a comodule is defined via a pair of compatible linear maps. Both the total algebra and the base (co)algebra of a regular weak multiplier bialgebra with a full comultiplication are shown to carry comodule structures. Kahng and Van Daele's integrals [The Larson–Sweedler theorem for weak multiplier Hopf algebras, in preparation] are interpreted as comodule maps from the total to the base algebra. Generalizing the counitality of a comodule to the multiplier setting, we consider the particular class of so-called full comodules. They are shown to carry bi(co)module structures over the base (co)algebra and constitute a monoidal category via the (co)module tensor product over the base (co)algebra. If a regular weak multiplier bialgebra with a full comultiplication possesses an antipode, then finite-dimensional full comodules are shown to possess duals in the monoidal category of full comodules. Hopf modules are introduced over regular weak multiplier bialgebras with a full comultiplication. Whenever there is an antipode, the Fundamental Theorem of Hopf Modules is proven. It asserts that the category of Hopf modules is equivalent to the category of firm modules over the base algebra.


1998 ◽  
Vol 5 (3) ◽  
pp. 263-276
Author(s):  
J. L. Loday ◽  
T. Pirashvili

Abstract We equip the category of linear maps of vector spaces with a tensor product which makes it suitable for various constructions related to Leibniz algebras. In particular, a Leibniz algebra becomes a Lie object in and the universal enveloping algebra functor UL from Leibniz algebras to associative algebras factors through the category of cocommutative Hopf algebras in . This enables us to prove a Milnor–Moore type theorem for Leibniz algebras.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

International audience We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras. Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.


2013 ◽  
Vol 41 (11) ◽  
pp. 4299-4332
Author(s):  
Ningyuan Yao ◽  
Xiaolong Jiang

2001 ◽  
Vol 44 (1) ◽  
pp. 19-26 ◽  
Author(s):  
M. D. Crossley ◽  
Sarah Whitehouse

AbstractLet $A$ be a graded, commutative Hopf algebra. We study an action of the symmetric group $\sSi_n$ on the tensor product of $n-1$ copies of $A$; this action was introduced by the second author in 1 and is relevant to the study of commutativity conditions on ring spectra in stable homotopy theory 2.We show that for a certain class of Hopf algebras the cohomology ring $H^*(\sSi_n;A^{\otimes n-1})$ is independent of the coproduct provided $n$ and $(n-2)!$ are invertible in the ground ring. With the simplest coproduct structure, the group action becomes particularly tractable and we discuss the implications this has for computations.AMS 2000 Mathematics subject classification: Primary 16W30; 57T05; 20C30; 20J06; 55S25


2021 ◽  
Vol 6 (10) ◽  
pp. 10523-10539
Author(s):  
Ruifang Yang ◽  
◽  
Shilin Yang

<abstract><p>In this paper, we construct all the indecomposable modules of a class of non-pointed Hopf algebras, which are quotient Hopf algebras of a class of prime Hopf algebras of GK-dimension one. Then the decomposition formulas of the tensor product of any two indecomposable modules are established. Based on these results, the representation ring of the Hopf algebras is characterized by generators and some relations.</p></abstract>


2004 ◽  
Vol 03 (01) ◽  
pp. 91-104 ◽  
Author(s):  
SHILIN YANG

In this paper, the representation type of a class of pointed Hopf algebras is determined. As an application, all indecomposable modules of a simple-pointed Hopf algebra R(q,α) are classified. The Clebsch–Gordan-like formula for the decomposition of the tensor product, taken on the ground field, of two indecomposable modules of R(q,α) is obtained.


Sign in / Sign up

Export Citation Format

Share Document