scholarly journals Comodules over weak multiplier bialgebras

2014 ◽  
Vol 25 (05) ◽  
pp. 1450037 ◽  
Author(s):  
Gabriella Böhm

This is a sequel paper of [Weak multiplier bialgebras, Trans. Amer. Math. Soc., in press] in which we study the comodules over a regular weak multiplier bialgebra over a field, with a full comultiplication. Replacing the usual notion of coassociative coaction over a (weak) bialgebra, a comodule is defined via a pair of compatible linear maps. Both the total algebra and the base (co)algebra of a regular weak multiplier bialgebra with a full comultiplication are shown to carry comodule structures. Kahng and Van Daele's integrals [The Larson–Sweedler theorem for weak multiplier Hopf algebras, in preparation] are interpreted as comodule maps from the total to the base algebra. Generalizing the counitality of a comodule to the multiplier setting, we consider the particular class of so-called full comodules. They are shown to carry bi(co)module structures over the base (co)algebra and constitute a monoidal category via the (co)module tensor product over the base (co)algebra. If a regular weak multiplier bialgebra with a full comultiplication possesses an antipode, then finite-dimensional full comodules are shown to possess duals in the monoidal category of full comodules. Hopf modules are introduced over regular weak multiplier bialgebras with a full comultiplication. Whenever there is an antipode, the Fundamental Theorem of Hopf Modules is proven. It asserts that the category of Hopf modules is equivalent to the category of firm modules over the base algebra.

2018 ◽  
Vol 62 (1) ◽  
pp. 43-57
Author(s):  
TAO YANG ◽  
XUAN ZHOU ◽  
HAIXING ZHU

AbstractFor a multiplier Hopf algebra pairing 〈A,B〉, we construct a class of group-cograded multiplier Hopf algebras D(A,B), generalizing the classical construction of finite dimensional Hopf algebras introduced by Panaite and Staic Mihai [Isr. J. Math. 158 (2007), 349–365]. Furthermore, if the multiplier Hopf algebra pairing admits a canonical multiplier in M(B⊗A) we show the existence of quasitriangular structure on D(A,B). As an application, some special cases and examples are provided.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850133 ◽  
Author(s):  
Daowei Lu ◽  
Xiaohui Zhang

Let [Formula: see text] be a Hom-bialgebra. In this paper, we firstly introduce the notion of Hom-L-R smash coproduct [Formula: see text], where [Formula: see text] is a Hom-coalgebra. Then for a Hom-algebra and Hom-coalgebra [Formula: see text], we introduce the notion of Hom-L-R-admissible pair [Formula: see text]. We prove that [Formula: see text] becomes a Hom-bialgebra under Hom-L-R smash product and Hom-L-R smash coproduct. Next, we will introduce a prebraided monoidal category [Formula: see text] of Hom–Yetter–Drinfel’d–Long bimodules and show that Hom-L-R-admissible pair [Formula: see text] actually corresponds to a bialgebra in the category [Formula: see text], when [Formula: see text] and [Formula: see text] are involutions. Finally, we prove that when [Formula: see text] is finite dimensional Hom-Hopf algebra, [Formula: see text] is isomorphic to the Yetter–Drinfel’d category [Formula: see text] as braid monoidal categories where [Formula: see text] is the tensor product Hom–Hopf algebra.


Author(s):  
L. Felipe Müller ◽  
Dominik J. Wrazidlo

AbstractThe Brauer category is a symmetric strict monoidal category that arises as a (horizontal) categorification of the Brauer algebras in the context of Banagl’s framework of positive topological field theories (TFTs). We introduce the chromatic Brauer category as an enrichment of the Brauer category in which the morphisms are component-wise labeled. Linear representations of the (chromatic) Brauer category are symmetric strict monoidal functors into the category of real vector spaces and linear maps equipped with the Schauenburg tensor product. We study representation theory of the (chromatic) Brauer category, and classify all its faithful linear representations. As an application, we use indices of fold lines to construct a refinement of Banagl’s concrete positive TFT based on fold maps into the plane.


1998 ◽  
Vol 5 (3) ◽  
pp. 263-276
Author(s):  
J. L. Loday ◽  
T. Pirashvili

Abstract We equip the category of linear maps of vector spaces with a tensor product which makes it suitable for various constructions related to Leibniz algebras. In particular, a Leibniz algebra becomes a Lie object in and the universal enveloping algebra functor UL from Leibniz algebras to associative algebras factors through the category of cocommutative Hopf algebras in . This enables us to prove a Milnor–Moore type theorem for Leibniz algebras.


2010 ◽  
Vol 09 (02) ◽  
pp. 275-303 ◽  
Author(s):  
K. JANSSEN ◽  
J. VERCRUYSSE

We propose a categorical interpretation of multiplier Hopf algebras, in analogy to usual Hopf algebras and bialgebras. Since the introduction of multiplier Hopf algebras by Van Daele [Multiplier Hopf algebras, Trans. Amer. Math. Soc.342(2) (1994) 917–932] such a categorical interpretation has been missing. We show that a multiplier Hopf algebra can be understood as a coalgebra with antipode in a certain monoidal category of algebras. We show that a (possibly nonunital, idempotent, nondegenerate, k-projective) algebra over a commutative ring k is a multiplier bialgebra if and only if the category of its algebra extensions and both the categories of its left and right modules are monoidal and fit, together with the category of k-modules, into a diagram of strict monoidal forgetful functors.


2012 ◽  
Vol 23 (3) ◽  
pp. 555-567 ◽  
Author(s):  
BOB COECKE ◽  
DUSKO PAVLOVIC ◽  
JAMIE VICARY

We show that an orthogonal basis for a finite-dimensional Hilbert space can be equivalently characterised as a commutative †-Frobenius monoid in the category FdHilb, which has finite-dimensional Hilbert spaces as objects and continuous linear maps as morphisms, and tensor product for the monoidal structure. The basis is normalised exactly when the corresponding commutative †-Frobenius monoid is special. Hence, both orthogonal and orthonormal bases are characterised without mentioning vectors, but just in terms of the categorical structure: composition of operations, tensor product and the †-functor. Moreover, this characterisation can be interpreted operationally, since the †-Frobenius structure allows the cloning and deletion of basis vectors. That is, we capture the basis vectors by relying on their ability to be cloned and deleted. Since this ability distinguishes classical data from quantum data, our result has important implications for categorical quantum mechanics.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250026
Author(s):  
DANIEL BULACU ◽  
STEFAAN CAENEPEEL

Let B be a bialgebra, and A be a left B-comodule algebra in a braided monoidal category [Formula: see text], and assume that A is also a coalgebra, with a not-necessarily associative or unital left B-action. Then we can define a right A-action on the tensor product of two relative Hopf modules, and this defines a monoidal structure on the category of relative Hopf modules if and only if A is a bialgebra in the category of left Yetter–Drinfeld modules over B. Some examples are given.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Sign in / Sign up

Export Citation Format

Share Document