On Prime Submodules of a Finitely Generated Free Module Over a Commutative Ring

2016 ◽  
Vol 44 (9) ◽  
pp. 3966-3975 ◽  
Author(s):  
F. Mirzaei ◽  
R. Nekooei
2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


2001 ◽  
Vol 43 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Patrick F. Smith

The radical of a module over a commutative ring is the intersection of all prime submodules. It is proved that if R is a commutative domain which is either Noetherian or a UFD then R is one-dimensional if and only if every (finitely generated) primary R-module has prime radical, and this holds precisely when every (finitely generated) R-module satisfies the radical formula for primary submodules.


1986 ◽  
Vol 29 (1) ◽  
pp. 37-39 ◽  
Author(s):  
Roy L. McCasland ◽  
Marion E. Moore

AbstractThe concept of the M-radical of a submodule B of an R-module A is discussed (R is a commutative ring with identity and A is a unitary fl-module). The M-radical of B is defined as the intersection of all prime submodules of A containing B. The main result of the paper is that if denotes the ideal radical of (B:A), then M-rad B = provided that A is a finitely generated multiplication module. Additionally, it is shown that if A is an arbitrary module, where for some


2015 ◽  
Vol 29 ◽  
pp. 144-155
Author(s):  
K. Prasad ◽  
Nupur Nandini ◽  
Divya Shenoy

In this paper, we invoke theory of generalized inverses and minus partial order on regular matrices over a commutative ring to define rank–function for regular matrices and dimension–function for finitely generated projective modules which are direct summands of a free module. Some properties held by the rank of a matrix and the dimension of a vector space over a field are generalized. Also, a generalization of rank-nullity theorem has been established when the matrix given is regular.


2011 ◽  
Vol 53 (3) ◽  
pp. 707-715
Author(s):  
DAVID E. RUSH

AbstractIt is shown that the well-known characterizations of when a commutative ringRhas Noetherian spectrum carry over to characterizations of when the set Spec(M) of prime submodules of a finitely generated moduleMis Noetherian. The symmetric algebraSR(M) ofMis used to show that the Noetherian property of Spec(R), and some related properties, pass from the ringRto the finitely generatedR-modules.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

10.37236/1877 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
J. Bell ◽  
A. M. Garsia ◽  
N. Wallach

We introduce here a new approach to the study of $m$-quasi-invariants. This approach consists in representing $m$-quasi-invariants as $N^{tuples}$ of invariants. Then conditions are sought which characterize such $N^{tuples}$. We study here the case of $S_3$ $m$-quasi-invariants. This leads to an interesting free module of triplets of polynomials in the elementary symmetric functions $e_1,e_2,e_3$ which explains certain observed properties of $S_3$ $m$-quasi-invariants. We also use basic results on finitely generated graded algebras to derive some general facts about regular sequences of $S_n$ $m$-quasi-invariants


2021 ◽  
Vol 10 (11) ◽  
pp. 3479-3489
Author(s):  
K. Al-Zoubi ◽  
M. Al-Azaizeh

Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity, $M$ a graded $R$-module and $S\subseteq h(R)$ a multiplicatively closed subset of $R$. In this paper, we introduce the concept of graded $S$-prime submodules of graded modules over graded commutative rings. We investigate some properties of this class of graded submodules and their homogeneous components. Let $N$ be a graded submodule of $M$ such that $(N:_{R}M)\cap S=\emptyset $. We say that $N$ is \textit{a graded }$S$\textit{-prime submodule of }$M$ if there exists $s_{g}\in S$ and whenever $a_{h}m_{i}\in N,$ then either $s_{g}a_{h}\in (N:_{R}M)$ or $s_{g}m_{i}\in N$ for each $a_{h}\in h(R) $ and $m_{i}\in h(M).$


Sign in / Sign up

Export Citation Format

Share Document