DENSITIES AND DERIVED THERMODYNAMIC PROPERTIES OF THE BINARY SYSTEMS OF BENZENE WITH BUTYL METHACRYLATE, ALLYL METHACRYLATE, METHACRYLIC ACID, AND VINYL ACETATE AT 298.15 K

2007 ◽  
Vol 194 (5) ◽  
pp. 635-647 ◽  
Author(s):  
René D. Peralta ◽  
Ramiro Infante ◽  
Gladis Cortez ◽  
Jaime Wisniak
1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


Sign in / Sign up

Export Citation Format

Share Document