THE EFFECTS OF VARIABLE FLUID PROPERTIES ON MHD MAXWELL FLUIDS OVER A STRETCHING SURFACE IN THE PRESENCE OF HEAT GENERATION/ABSORPTION

2010 ◽  
Vol 198 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Mostafa A. A. Mahmoud
2021 ◽  
Vol 69 (2) ◽  
pp. 109-115
Author(s):  
MG Murtaza ◽  
MZI Bangalee ◽  
Mohammad Sahadet Hossain ◽  
M Ferdows

The impact of variable fluid properties (viscosity and thermal conductivity) and magnetic dipole on biomagnetic Maxwell fluid past a stretching sheet with slip velocity and heat generation/absorptionhave been studied. Similarity transformation technique is adopted to obtain the self-similar coupled nonlinear ordinary differential equations. Using similarity variable, the basic governing equations with boundary conditions are transformed and solved in bvp4c technique with MATLAB software. The contribution of different pertinent parameters such as viscosity, thermal conductivity and ferromagnetic parameter on the flow profiles with physical quantities are analyzed and examined through graphically. Results shown that with increasing ferromagnetic parameter, slip parameter, Maxwell parameter, velocity decreases but temperature increases. For accuracy of the proposed model to compare our numerical results in numerically and graphically with the previousliterature under some limiting cases and a good agreement is found. Dhaka Univ. J. Sci. 69(2): 109-115, 2021 (July)


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880736 ◽  
Author(s):  
Waris Khan ◽  
Muhammad Idress ◽  
Taza Gul ◽  
Muhammad Altaf Khan ◽  
Ebenezer Bonyah

This research examines the features of liquid film of non-Newtonian fluids under the influence of thermophoresis. For this study, we proposed a mathematical model for Jeffrey, Maxwell, and Oldroyd-B fluids and concluded the unsteady stretched surface in the existence of a magnetic field and also the thermal conductivity was measured which is directly related to the temperature whereas the viscosity inversely related to the temperature. Inserting the thermophoretic effect which improved the thermal conductivity of Jeffrey fluid over the Oldroyd-B and Maxwell fluids. The model is helpful for the liquid flow of Jeffrey, Maxwell, and Oldroyd-B fluid including the Brownian motion parameter effect. The results have been obtained through optimal approach compared with numerical (ND-Solve) method. Study mainly focused to understand the physical appearance of the embedded parameters based on the characteristic length of the liquid flow. The behavior of skin friction, local Nusselt number, and Sherwood number has been described numerically for the dynamic constraints of the problem. The obtained results are drafted graphically and discussed.


2017 ◽  
Vol 13 (3) ◽  
pp. 31-50
Author(s):  
Nalinakshi N

Study of Mixed Convection past a vertical heated plate embedded in a sparsely packed porous medium with internal heat generation and variable fluid properties like permeability, porosity and thermal conductivity has been carried out numerically. In this analysis, the governing highly non-linear coupled partial differential equations are transformed into a system of ordinary differential equations with the help of similarity transformations and solved them numerically by using the shooting algorithm with Runge-Kutta-Fehlberg scheme and Newton Raphson method to obtain velocity, temperature and concentration distributions. The features of fluid flow, heat and mass transfer characteristics are analyzed by plotting the graphs and the physical aspects are discussed in detail to interpret the effect of various significant parameters of the problem. The results obtained show that the impact of buoyancy ratio parameter, Prandtl number Pr, Schmidt number Sc and other parameters plays an important role in the fluid flow through porous medium. The obtained results are compared with previously published work of


Sign in / Sign up

Export Citation Format

Share Document