Double-diffusivity heat generation effects on bioconvection process embedded in a vertical porous surface with variable fluid properties

Author(s):  
Nayema Islam Nima ◽  
M. Ferdows ◽  
S. O. Adesanya ◽  
Faris Alzahrani
2021 ◽  
Vol 69 (2) ◽  
pp. 109-115
Author(s):  
MG Murtaza ◽  
MZI Bangalee ◽  
Mohammad Sahadet Hossain ◽  
M Ferdows

The impact of variable fluid properties (viscosity and thermal conductivity) and magnetic dipole on biomagnetic Maxwell fluid past a stretching sheet with slip velocity and heat generation/absorptionhave been studied. Similarity transformation technique is adopted to obtain the self-similar coupled nonlinear ordinary differential equations. Using similarity variable, the basic governing equations with boundary conditions are transformed and solved in bvp4c technique with MATLAB software. The contribution of different pertinent parameters such as viscosity, thermal conductivity and ferromagnetic parameter on the flow profiles with physical quantities are analyzed and examined through graphically. Results shown that with increasing ferromagnetic parameter, slip parameter, Maxwell parameter, velocity decreases but temperature increases. For accuracy of the proposed model to compare our numerical results in numerically and graphically with the previousliterature under some limiting cases and a good agreement is found. Dhaka Univ. J. Sci. 69(2): 109-115, 2021 (July)


2017 ◽  
Vol 13 (3) ◽  
pp. 31-50
Author(s):  
Nalinakshi N

Study of Mixed Convection past a vertical heated plate embedded in a sparsely packed porous medium with internal heat generation and variable fluid properties like permeability, porosity and thermal conductivity has been carried out numerically. In this analysis, the governing highly non-linear coupled partial differential equations are transformed into a system of ordinary differential equations with the help of similarity transformations and solved them numerically by using the shooting algorithm with Runge-Kutta-Fehlberg scheme and Newton Raphson method to obtain velocity, temperature and concentration distributions. The features of fluid flow, heat and mass transfer characteristics are analyzed by plotting the graphs and the physical aspects are discussed in detail to interpret the effect of various significant parameters of the problem. The results obtained show that the impact of buoyancy ratio parameter, Prandtl number Pr, Schmidt number Sc and other parameters plays an important role in the fluid flow through porous medium. The obtained results are compared with previously published work of


2017 ◽  
Vol 834 ◽  
pp. 5-54 ◽  
Author(s):  
Dorian Dupuy ◽  
Adrien Toutant ◽  
Françoise Bataille

This paper investigates the energy exchanges associated with the half-trace of the velocity fluctuation correlation tensor in a strongly anisothermal low Mach fully developed turbulent channel flow. The study is based on direct numerical simulations of the channel within the low Mach number hypothesis and without gravity. The overall flow behaviour is governed by the variable fluid properties. The temperature of the two channel walls are imposed at 293 K and 586 K to generate the temperature gradient. The mean friction Reynolds number of the simulation is 180. The analysis is carried out in the spatial and spectral domains. The spatial and spectral studies use the same decomposition of the terms of the evolution equation of the half-trace of the velocity fluctuation correlation tensor. The importance of each term of the decomposition in the energy exchanges is assessed. This lets us identify the terms associated with variations or fluctuations of the fluid properties that are not negligible. Then, the behaviour of the terms is investigated. The spectral energy exchanges are first discussed in the incompressible case since the analysis is not present in the literature with the decomposition used in this study. The modification of the energy exchanges by the temperature gradient is then investigated in the spatial and spectral domains. The temperature gradient generates an asymmetry between the two sides of the channel. The asymmetry can in a large part be explained by the combined effect of the mean local variations of the fluid properties, combined with a Reynolds number effect.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Raj Nandkeolyar ◽  
Peri K. Kameswaran ◽  
Sachin Shaw ◽  
Precious Sibanda

We investigated heat and mass transfer on water based nanofluid due to the combined effects of homogeneous–heterogeneous reactions, an external magnetic field and internal heat generation. The flow is generated by the movement of a linearly stretched surface, and the nanofluid contains nanoparticles of copper and gold. Exact solutions of the transformed model equations were obtained in terms of hypergeometric functions. To gain more insights regarding subtle impact of fluid and material parameters on the heat and mass transfer characteristics, and the fluid properties, the equations were further solved numerically using the matlab bvp4c solver. The similarities and differences in the behavior, including the heat and mass transfer characteristics, of the copper–water and gold–water nanofluids with respect to changes in the flow parameters were investigated. Finally, we obtained the numerical values of the skin friction and heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document