Molecular Ordering of a Nematogen at Phase Transition Temperature - A Theoretical Study

2002 ◽  
Vol 75 (4-5) ◽  
pp. 413-421
Author(s):  
Durga Prasad Ojha ◽  
Devesh Kumar ◽  
V.G.K.M. Pisipati
2005 ◽  
Vol 04 (03) ◽  
pp. 803-810 ◽  
Author(s):  
DURGA PRASAD OJHA

The molecular ordering of a thermotropic mesogen, 4-alkenyl bicyclohexylnitrile (ALKBCHN), has been carried out on the basis of quantum mechanics and intermolecular forces. The evaluation of atomic charges and dipole moment at each atomic centre has been done through the Complete Neglect Differential Overlap (CNDO/2) method. The configurational energy has been computed using the Rayleigh-Schrodinger perturbation method. The total interaction energy values obtained through these computations were used to calculate the probability of each configuration in a dielectric medium (i.e. non-interacting and non-mesogenic solvent, benzene) at phase transition temperature (364.7 K) using the Maxwell–Boltzmann formula. It has been observed that in dielectric medium the energies/probabilities are redistributed and there is a considerable rise in the probability of interactions, although the order of preference remains the same. An attempt has been made to develop a new and interesting model of mesogen in a dielectric medium. The present article offers a theoretical support to the experimental observations.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Sign in / Sign up

Export Citation Format

Share Document