Performance analysis of vortex flow through a swirler by computational fluid dynamics technique

2018 ◽  
Vol 41 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Sreetam Bhaduri ◽  
M. Sundarraj
Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


2015 ◽  
Vol 87 ◽  
pp. 352-361 ◽  
Author(s):  
Hyuck Jun Jang ◽  
Soo Young Kang ◽  
Jeong Jin Lee ◽  
Tong Seop Kim ◽  
Seong Jin Park

AIChE Journal ◽  
2019 ◽  
Vol 65 (5) ◽  
pp. e16563 ◽  
Author(s):  
Hongkang Zhao ◽  
Qunsheng Li ◽  
Gangqiang Yu ◽  
Chengna Dai ◽  
Zhigang Lei

Author(s):  
M J King ◽  
T David ◽  
J Fisher

The effect of leaflet opening angle on flow through a bileaflet mechanical heart valve has been investigated using computational fluid dynamics (CFD). Steady state, laminar flow for a Newtonian fluid at a Reynolds number of 1500 was used in the two-dimensional model of the valve, ventricle, sinus and aorta. This computational model was verified using one-dimensional laser Doppler velocimetry (LDV). Although marked differences in the flow fields and energy dissipation of the jets downstream of the valve were found between the CFD predictions and the three-dimensional experimental model, both methods showed similar trends in the changes of the flow fields as the leaflet opening angle was altered. As the opening angle increased the area of recirculating fluid downstream of the leaflets, the pressure drop across the valve and the volumetric flow rate through the outer orifice decreased. For opening angles greater than 80° the jet through the outer orifice recombined with the central jet downstream of the leaflet; for an opening angle of 78° the jet through the outer orifice impinged on the aortic wall before recombining with the central jet. This study suggests that the opening angle has a marked effect on the flow downstream of the bileaflet mechanical heart valve and that valves with opening angles greater than 80° are preferable.


Sign in / Sign up

Export Citation Format

Share Document