scholarly journals Application of Computational Fluid Dynamics to Practical Design and Performance Analysis of Turbomachinery

10.5772/7105 ◽  
2010 ◽  
Author(s):  
Hyoung Woo
Author(s):  
H W Oh ◽  
E S Yoon

The hydrodynamic design optimization and performance analysis of a mixed-flow waterjet pump have been achieved using the validated commercial computational fluid dynamics (CFD) code. The detailed flow field in the waterjet pump is investigated by the CFD code adopted in the present study. Predicted characteristic curves, including the cavitation performance, agree very well with the test data for a designed mixed-flow waterjet pump over the entire operating conditions. A hydraulically detailed performance analysis with a net positive suction head can be used efficiently as a tool for the practical design optimization and assist in the understanding of the operational characteristics of general purpose mixed-flow pumps.


Author(s):  
Manoochehr Darvish ◽  
Bastian Tietjen ◽  
Daniel Beck ◽  
Stefan Frank

The main focus of this work is on the geometrical modifications that can be applied to the fan wheel and the volute tongue of a radial fan to reduce the tonal noise. The experimental measurements are performed by using the in-duct method in accordance with ISO 5136. In addition to the experimental measurements, CFD (Computational Fluid Dynamics) and CAA (Computational Aeroacoustics) simulations are carried out to investigate the effects of different modifications on the noise and performance of the fan. It is shown that by modifying the blade outlet angle, the tonal noise of the fan can be reduced without affecting the performance of the fan. Moreover, it is indicated that increasing the number of blades leads to a significant reduction in the tonal noise and also an improvement in the performance. However, this trend is only valid up to a certain number of blades, and a further increment might reduce the aerodynamic performance of the fan. Besides modifying the impeller geometry, new volute tongues are designed and manufactured. It is demonstrated that the shape of the volute tongue plays an important role in the tonal noise generation of the fan. It is possible to reduce the tonal noise by using stepped tongues which produce phase-shift effects that lead to an effective local cancellation of the noise.


2015 ◽  
Vol 87 ◽  
pp. 352-361 ◽  
Author(s):  
Hyuck Jun Jang ◽  
Soo Young Kang ◽  
Jeong Jin Lee ◽  
Tong Seop Kim ◽  
Seong Jin Park

AIChE Journal ◽  
2019 ◽  
Vol 65 (5) ◽  
pp. e16563 ◽  
Author(s):  
Hongkang Zhao ◽  
Qunsheng Li ◽  
Gangqiang Yu ◽  
Chengna Dai ◽  
Zhigang Lei

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Meinhard T. Schobeiri ◽  
S. Abdelfattah ◽  
H. Chibli

Despite the tremendous progress over the past three decades in the area of turbomachinery computational fluid dynamics, there are still substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. These differences are integrally noticeable in terms of major discrepancies in aerodynamic losses, efficiency, and performance of the turbomachines. As a consequence, engine manufacturers are compelled to frequently calibrate their simulation package by performing a series of experiments before issuing efficiency and performance guaranty. This paper aims at identifying the quantities, whose simulation inaccuracies are preeminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions, resulting in an integral behavior of the turbomachine in terms of efficiency and performance; (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity; and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, a two-stage, high-pressure axial turbine rotor has been designed and inserted into the TPFL turbine research facility for generating benchmark data to compare with the numerical results. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speed. For comparison with numerical simulations, the turbine was numerically modeled using a commercial code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis.


Sign in / Sign up

Export Citation Format

Share Document