A Novel Hybrid Chi-Mo Optimization Algorithm Based PV fed STATCOM for Performance Improvement of Power Distribution System.

Author(s):  
Suraj Deelip Pawar ◽  
Diwakar R. Joshi ◽  
Rutuja L. Patil
2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper intends to consider a multi-objective problem for expansion planning in Power Distribution System (PDS) by focusing on (i) expansion strategy (ii) allocation of Circuit Breaker (CB), (iii) allocation of Distribution Static Compensator (DSTATCOM), (iv) Contingency Load Loss Index (CLLI), and power loss. Accordingly, the encoding parameters decide for expansion, Circuit Breaker (CB) placement, DSTATCOM placement, load of real and reactive powers of expanded bus or node are optimized using Grasshopper Optimization Algorithm (GOA) based on its distance and hence, the proposed algorithm is termed as Distance Oriented Grasshopper Optimization Algorithm (DGOA). The proposed expansion planning model is carried out in IEEE 33 test bus system. Moreover, the adopted scheme is compared with conventional algorithms and the optimal results are obtained.


Author(s):  
Deepak Kumar ◽  
Ayan Ghosh ◽  
S.R. Samantaray ◽  
Sumit Kr. Jha

Abstract This paper presents a new approach based on the application of a bit-shift operator based multi-objective seeker-optimization-algorithm (BS-MOSOA) for designing of combined primary and secondary power distribution system (CPDS) considering both system cost and reliability. In number of researches works the planning of secondary power distribution system (PDS) has not been considered for planning strategy. However, it is observed that the total investment and operational cost components of secondary PDS plays an important role in the overall system cost. Thus, in this proposed research a CPDS has been considered for comprehensive planning of complex PDS. Furthermore, a reliability index called Contingency-load-loss-index is used for the reliability assessment of the network. The algorithm uses a modified version of seeker-optimization-algorithm (SOA), which is based on the status of changing switches and shift operator to generate a group of non-dominated solutions. Also, fuzzy theory approach is used for selection of most suitable solution among the non-dominated solutions from the obtained Pareto-front. The proposed method is illustrated on a real test case consist of a residential primary and secondary network of 75 electrical nodes. Furthermore, a qualitative comparison is made with existing traditional and classical methodologies, to show the efficacy of the proposed planning approach.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1018 ◽  
Author(s):  
Sherif Ismael ◽  
Shady Abdel Aleem ◽  
Almoataz Abdelaziz ◽  
Ahmed Zobaa

The high penetration of distributed generation (DG) units with their power-electronic interfaces may lead to various power quality problems, such as excessive harmonic distortions and increased non-sinusoidal power losses. In this paper, the probabilistic hosting capacity (PHC) due to the high penetration of photovoltaic units in a non-sinusoidal power distribution system is investigated. A C-type harmonic filter is proposed, to maximize the harmonic-constrained PHC. An optimization problem is formulated by using a Monte Carlo simulation, taking into account various uncertain parameters, such as the intermittent output power of the DGs, background voltage harmonics, load alteration, and the filter parameters’ variations. In addition, different operational constraints have been considered, such as the bus voltage, line thermal capacity, power factor, and individual and total harmonic distortion limits. A swarm-based, meta-heuristic optimization algorithm known as the hybrid particle swarm optimization and gravitational search algorithm (PSOGSA) has been examined for the optimal design of the proposed filter. Besides, other optimization algorithms were examined for validation of the solution. The PHC results obtained are compared with the conventional deterministic HC (DHC) results, and it is found that the PHC levels are higher than those obtained by conservative HC procedures, practical rules of thumb, and the DHC approaches.


Sign in / Sign up

Export Citation Format

Share Document