scholarly journals Evaluating MODIS soil fractional cover for arid regions, using albedo from high-spatial resolution satellite imagery

2014 ◽  
Vol 35 (6) ◽  
pp. 2028-2046 ◽  
Author(s):  
E.F. Lawley ◽  
M.M. Lewis ◽  
B. Ostendorf
2020 ◽  
Vol 12 (21) ◽  
pp. 3608
Author(s):  
Kelsey Warkentin ◽  
Douglas Stow ◽  
Kellie Uyeda ◽  
John O’Leary ◽  
Julie Lambert ◽  
...  

The purpose of this study is to map shrub distributions and estimate shrub cover fractions based on the classification of high-spatial-resolution aerial orthoimagery and light detection and ranging (LiDAR) data for portions of the highly disturbed coastal sage scrub landscapes of San Clemente Island, California. We utilized nine multi-temporal aerial orthoimage sets for the 2010 to 2018 period to map shrub cover. Pixel-based and object-based image analysis (OBIA) approaches to image classification of growth forms were tested. Shrub fractional cover was estimated for 10, 20 and 40 m grid sizes and assessed for accuracy. The most accurate estimates of shrub cover were generated with the OBIA method with both multispectral brightness values and canopy height estimates from a normalized digital surface model (nDSM). Fractional cover products derived from 2015 and 2017 orthoimagery with nDSM data incorporated yielded the highest accuracies. Major factors that influenced the accuracy of shrub maps and fractional cover estimates include the time of year and spatial resolution of the imagery, the type of classifier, feature inputs to the classifier, and the grid size used for fractional cover estimation. While tracking actual changes in shrub cover over time was not the purpose, this study illustrates the importance of consistent mapping approaches and high-quality inputs, including very-high-spatial-resolution imagery and an nDSM.


2019 ◽  
Vol 75 ◽  
pp. 01013
Author(s):  
Dmitriy Mozgovoy ◽  
Dmitriy Svinarenko ◽  
Roman Tsarev ◽  
Tatiana Yamskikh

A method for monitoring attitude and positioning errors when taking satellite imagery of lengthy territories with complex configuration using an ultra-high spatial resolution optical-electronic scanner is described in the article. The results of modeling the system of automatic satellite attitude program control during the process of imagery are presented. Given these results, the impact of attitude and positioning errors during satellite imagery was estimated on the coverage percentage of the territory to be imaged.


2017 ◽  
Vol 191 ◽  
pp. 95-109 ◽  
Author(s):  
Ran Meng ◽  
Jin Wu ◽  
Kathy L. Schwager ◽  
Feng Zhao ◽  
Philip E. Dennison ◽  
...  

2015 ◽  
Author(s):  
Saad A. Alsharrah ◽  
David A. Bruce ◽  
Rachid Bouabid ◽  
Sekhar Somenahalli ◽  
Paul A. Corcoran

Sign in / Sign up

Export Citation Format

Share Document