Thermo-Elastic Analysis of a Cracked Half-Plane Under a Thermal Shock Impact Using the Hyperbolic Heat Conduction Theory

2012 ◽  
Vol 35 (4) ◽  
pp. 342-362 ◽  
Author(s):  
Z. T. Chen ◽  
K. Q. Hu
Author(s):  
A. H. Akbarzadeh ◽  
Z. T. Chen

In the present work, transient heat conduction in functionally graded (FG) hollow cylinders and spheres is investigated based on the non-Fourier heat conduction theories. Since the heat transmission has been observed to propagate at a finite speed for applications with very low temperature, short-pulse thermal-heating, and micro temporal and spatial scales, dual phase lag (DPL) and hyperbolic heat conduction theories are considered in current study instead of the conventional Fourier heat conduction theory. Except the phase lags which are assumed to be constant, all the other material properties of the hollow cylinders and spheres are taken to change continuously along the radial direction according to a power-law formulation with different non-homogeneity indices. The heat conduction equations are written based on the dual phase lag theory which includes the hyperbolic heat conduction theory as well. These equations are applied for axisymmetric hollow cylinders of infinite lengths and spherically symmetric hollow spheres. Using the Laplace transform and Bessel functions, the analytical solutions for temperature and heat flux are obtained in the Laplace domain. The solutions are then converted into the time domain by employing the fast Laplace inversion technique. The exact expression is obtained for the speed of thermal wave in FG cylinders and spheres based on the DPL and hyperbolic heat conduction theories. Finally, the current results are verified with those reported in the literature based on the hyperbolic heat conduction theory.


Author(s):  
B. L. Wang ◽  
J. E. Li

The thermal shock resistance of solids is analysed for a plate subjected to a sudden temperature change under the framework of hyperbolic, non-Fourier heat conduction. The closed form solution for the temperature field and the associated thermal stress are obtained for the plate without cracking. The transient thermal stress intensity factors are obtained through a weight function method. The maximum thermal shock temperature that the plate can sustain without catastrophic failure is obtained according to the two distinct criteria: (i) maximum local tensile stress criterion and (ii) maximum stress intensity factor criterion. The difference between the non-Fourier solutions and the classical Fourier solution is discussed. The traditional Fourier heat conduction considerably overestimates the thermal shock resistance of the solid. This confirms the fact that introduction of the non-Fourier heat conduction model is essential in the evaluation of thermal shock resistance of solids.


In the present work, a semi-analytical solution is presented for the thermoelastic response of a finite plate of rectangular geometry considering hyperbolic heat conduction model. The solution of thermoelastic displacement, thermal stresses and temperature are obtained using differential transform method under hyperbolic, non-Fourier heat conduction theory. For special case, thermal stresses and displacement functions are determined numerically and plotted graphically to analyze the effect of the thermal relaxation time.


Sign in / Sign up

Export Citation Format

Share Document