A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates

2021 ◽  
pp. 1-21
Author(s):  
Trung-Kien Nguyen ◽  
Huu-Tai Thai ◽  
Thuc P. Vo
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
B. Sidda Reddy ◽  
J. Suresh Kumar ◽  
C. Eswara Reddy ◽  
K. Vijaya Kumar Reddy

The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.


2014 ◽  
Vol 11 (06) ◽  
pp. 1350098 ◽  
Author(s):  
ABDERRAHMANE SAID ◽  
MOHAMMED AMEUR ◽  
ABDELMOUMEN ANIS BOUSAHLA ◽  
ABDELOUAHED TOUNSI

An improved simple hyperbolic shear deformation theory involving only four unknown functions, as against five functions in case of first or other higher-order shear deformation theories, is introduced for the analysis of functionally graded plates resting on a Winkler–Pasternak elastic foundation. The governing equations are derived by employing the principle of virtual work and the physical neutral surface concept. The accuracy of the present analysis is demonstrated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories.


Sign in / Sign up

Export Citation Format

Share Document