Using Medical Malpractice Data to Predict the Frequency of Claims: A Study of Poisson Process Models with Random Effects

1991 ◽  
Vol 86 (414) ◽  
pp. 285-295 ◽  
Author(s):  
Bruce Cooil
Author(s):  
Paul Cowpertwait ◽  
Valerie Isham ◽  
Christian Onof

A conceptual stochastic model of rainfall is proposed in which storm origins occur in a Poisson process, where each storm has a random lifetime during which rain cell origins occur in a secondary Poisson process. In addition, each cell has a random lifetime during which instantaneous random depths (or ‘pulses’) of rain occur in a further Poisson process. A key motivation behind the model formulation is to account for the variability in rainfall data over small (e.g. 5 min) and larger time intervals. Time-series properties are derived to enable the model to be fitted to aggregated rain gauge data. These properties include moments up to third order, the probability that an interval is dry, and the autocovariance function. To allow for distinct storm types (e.g. convective and stratiform), several processes may be superposed. Using the derived properties, a model consisting of two storm types is fitted to 60 years of 5 min rainfall data taken from a site near Wellington, New Zealand, using sample estimates taken at 5 min, 1 hour, 6 hours and daily levels of aggregation. The model is found to fit moments of the depth distribution up to third order very well at these time scales. Using the fitted model, 5 min series are simulated, and annual maxima are extracted and compared with equivalent values taken from the historical record. A good fit in the extremes is found at both 1 and 24 hour levels of aggregation, although at the 5 min level there is some underestimation of the historical values. Proportions of time intervals with depths below various low thresholds are extracted from the simulated and historical series and compared. A tendency for underestimation of the historical values is evident at some time scales, with a close fit being obtained as the threshold is increased.


2021 ◽  
pp. 1-21
Author(s):  
Cornelius Fritz ◽  
Paul W. Thurner ◽  
Göran Kauermann

Abstract We propose a novel tie-oriented model for longitudinal event network data. The generating mechanism is assumed to be a multivariate Poisson process that governs the onset and repetition of yearly observed events with two separate intensity functions. We apply the model to a network obtained from the yearly dyadic number of international deliveries of combat aircraft trades between 1950 and 2017. Based on the trade gravity approach, we identify economic and political factors impeding or promoting the number of transfers. Extensive dynamics as well as country heterogeneities require the specification of semiparametric time-varying effects as well as random effects. Our findings reveal strong heterogeneous as well as time-varying effects of endogenous and exogenous covariates on the onset and repetition of aircraft trade events.


Author(s):  
Luis Alberto Rodríguez-Picón ◽  
Anna Patricia Rodríguez-Picón ◽  
Luis Carlos Méndez-González ◽  
Manuel I. Rodríguez-Borbón ◽  
Alejandro Alvarado-Iniesta

Sign in / Sign up

Export Citation Format

Share Document