Formic acid fumigator for controlling varroa mites in honey bee hives

2006 ◽  
Vol 32 (2) ◽  
pp. 115-124 ◽  
Author(s):  
James W. Amrine ◽  
Robert Noel
Keyword(s):  
2007 ◽  
Vol 139 (6) ◽  
pp. 881-893 ◽  
Author(s):  
Robyn M. Underwood ◽  
Robert W. Currie

AbstractThis study examined the effects of indoor fumigation with formic acid on survival of honey bee, Apis mellifera L. (Hymenoptera: Apidae), queens and varroa mites (Varroa destructor Anderson and Trueman (Acari: Varroidae)). A relationship between cumulative formic acid concentration and varroa mite mortality was established for colonies subjected to high-concentration fumigation while held indoors at 2–4 °C during winter. We also examined the effects of the formic acid release pattern and room ventilation rate on queen loss and treatment efficacy during fumigation. Two experiments were conducted in a wintering building. In both experiments, room air had higher formic acid concentrations than hive air. In experiment 1, 50% and 95% of mites were killed when exposed to in-hive concentration × time combinations of 49 ppm × days (CT50 product) and 111 ppm × days (CT95 product), respectively. No queen loss was observed under either the increasing-concentration or constant high concentration fumigation pattern. In experiment 2, 33% of queens were lost when minimum ventilation was used with room air concentrations of 57 ± 8 ppm (mean ± SE), whereas no queens were lost in controls or colonies exposed to room air concentrations of 27 ± 8 ppm with variable ventilation. Queen loss was associated with peak in-hive formic acid concentrations >20 ppm, but not with CT product, suggesting that queens are affected by acute rather than chronic exposure to formic acid. Formic acid fumigation significantly reduced the mean abundance of mites under both minimum- and variable-ventilation treatments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonia Genath ◽  
Soroush Sharbati ◽  
Benjamin Buer ◽  
Ralf Nauen ◽  
Ralf Einspanier

AbstractFormic acid (FA) has been used for decades to control Varroa destructor, one of the most important parasites of the western honey bee, Apis mellifera. The rather unselective molecular mode of action of FA and its possible effects on honeybees have long been a concern of beekeepers, as it has undesirable side effects that affect the health of bee colonies. This study focuses on short-term transcriptomic changes as analysed by RNAseq in both larval and adult honey bees and in mites after FA treatment under applied conditions. Our study aims to identify those genes in honey bees and varroa mites differentially expressed upon a typical FA hive exposure scenario. Five detoxification-related genes were identified with significantly enhanced and one gene with significantly decreased expression under FA exposure. Regulated genes in our test setting included members of various cytochrome P450 subfamilies, a flavin-dependent monooxygenase and a cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH), known to be involved in formate metabolism in mammals. We were able to detect differences in the regulation of detoxification-associated genes between mites and honey bees as well as between the two different developmental stages of the honey bee. Additionally, we detected repressed regulation of Varroa genes involved in cellular respiration, suggesting mitochondrial dysfunction and supporting the current view on the mode of action of FA—inhibition of oxidative phosphorylation. This study shows distinct cellular effects induced by FA on the global transcriptome of both host and parasite in comparison. Our expression data might help to identify possible differences in the affected metabolic pathways and thus make a first contribution to elucidate the mode of detoxification of FA.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1032
Author(s):  
Ziyad Abdul Qadir ◽  
Atif Idrees ◽  
Rashid Mahmood ◽  
Ghulam Sarwar ◽  
Muhammad Abu Bakar ◽  
...  

Honey bees (Apis mellifera) are essential for their products—honey, royal jelly, pollen, propolis and beeswax. They are also indispensable because they support ecosystems with their pollination services. However, the production and functions of honey bees are hindered by the arthropod pest Varroa destructor, which attacks bees through its feeding activities. Efforts to control varroa mites have been made through the development of various synthetic pesticide groups, but have had limited success because the mites developed resistance and some of these pesticides are harmful to bees. Branded pesticides are rarely used in Pakistan, as beekeepers utilize acaricides from unknown sources. There is a need to create awareness of available naturally occurring acaricides that may serve as an alternative to synthetic acaricides. Although some naturally occurring compounds are considered toxic to the environment, the soft acaricides oxalic acid, thymol, and formic acid 65% are usually safe for honey bee colonies and beekeepers, when handled appropriately. The current study investigated the effectiveness of formic acid (10, 15, and 20 mL/hive), oxalic acid (4.2, 3.2, and 2.1%/hive), and thymol (6, 4, and 2 g/hive) in controlling mite infestation. The results indicated that all treatments significantly reduced the mite population (p < 0.05). The average efficacies of oxalic acid at 3.2% (94.84% ± 0.34) and 4.2% (92.68% ± 0.37) were significantly higher than those of the other treatments. The lowest efficacy was recorded in formic acid 65% at 10 mL (54.13%). Overall, the results indicated that soft acaricides—such as oxalic acid at 3.2% and 4.2% concentrations—are very effective at controlling varroa mites and can be used in broodless conditions without side effects.


2001 ◽  
Vol 106 (2) ◽  
pp. 193-198
Author(s):  
Abdul-Majed Ahmed Al-Ghzawi ◽  
Shahera-Talat Zaitoun ◽  
Hail-K. Shannag

2014 ◽  
Vol 217 (10) ◽  
pp. 1638-1638
Author(s):  
K. Knight
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document