Variable Flow Hot Water Heating Systems A Wonderful Technology

2002 ◽  
Vol 99 (1) ◽  
pp. 74-80
Author(s):  
Ron Powell
2008 ◽  
Vol 40 (9) ◽  
pp. 1731-1736 ◽  
Author(s):  
Ping Cui ◽  
Hongxing Yang ◽  
Jeffrey D. Spitler ◽  
Zhaohong Fang

2000 ◽  
Vol 122 (2) ◽  
pp. 92-100 ◽  
Author(s):  
Raghu Raman ◽  
Susan Mantell ◽  
Jane Davidson ◽  
Chunhui Wu ◽  
Gary Jorgensen

This paper summarizes current research aimed at using polymer materials for glazing and heat exchanger components in solar water heating systems. Functional requirements, relevant polymer properties and an approach for selecting polymers are described for each of these components. Glazing must have high transmittance across the solar spectrum and withstand long term exposure to ultraviolet (UV) light. Candidate glazing materials were tested outdoors for one year in Golden, Phoenix and Miami, as well as exposed for over 300 days in an accelerated testing facility at a concentration ratio of two at the National Renewable Energy Laboratory. Measurements of hemispherical transmittance indicate that a 3.35 mm polycarbonate sheet with a thin film acrylic UV screen provides good transmittance without excessive degradation. The primary challenge to designing a polymer heat exchanger is selecting a polymer that is compatible with potable water and capable of withstanding the high pressure and temperature requirements of domestic hot water systems. Polymers certified for hot water applications by the National Sanitation Foundation or currently used in heat exchangers and exhibit good high temperature characteristics were compared on the basis of a merit value (thermal conductance per unit area per dollar) and manufacturer’s recommendations. High temperature nylon (HTN), polypropylene (PP) and cross linked polypropylene (PEX) are recommended for tube components. For structural components (i.e. headers), glass reinforced high temperature nylon (HTN), polyphthalamide (PPA), polyphenylene sulphide (PPS) and polypropylene (PP) are recommended. [S0199-6231(00)00902-3]


2018 ◽  
Vol 3 ◽  
pp. 3 ◽  
Author(s):  
Kheira Tabet Aoul ◽  
Ahmad Hasan ◽  
Hassan Riaz

Building applied solar thermal systems are considered by different stakeholders an attractive alternative to traditional space and water heating systems. However, their performance depends largely on climatic conditions, water heating needs and operational parameters which, in turn, offer opportunities for performance optimization. The present research attempts to provide architects with a design decision tool that integrates solar thermal collectors efficiently to meet hot water demand for various building types inclusive of residential, commercial and industrial in a hot climate. The analysis is conducted numerically through a thermal model developed and executed in TRNSYS and validated experimentally. The parameters investigated include the collector tilt angle, azimuth angle and collector inlet fluid flow rate. Finally, the collector aperture area required per building foot print area is determined. The research revealed that for a 1000 m2 footprint building area of schools, offices, residential, factories and hospitals would require respectively 8 m2, 10 m2, 14 m2, 24 m2 and 38 m2 of the static collector installed at 24° tilt angle with optimal water flow rate. Additional operational aspects of collector tracking, and solar radiation concentration were investigated and further reduce the required collector area. A simple payback period analysis reveals a return on investment of 2 years applying subsidized tariff rates under the climatic conditions of, or similar to Dubai, in the United Arab Emirates.


Sign in / Sign up

Export Citation Format

Share Document