Revised GMDH-type Neural Networks with Radial Basis Functions and their Application to Medical Image Recognition of Stomach

2003 ◽  
Vol 43 (10) ◽  
pp. 1363-1376 ◽  
Author(s):  
T. Kondo
1995 ◽  
Vol 7 (2) ◽  
pp. 219-269 ◽  
Author(s):  
Federico Girosi ◽  
Michael Jones ◽  
Tomaso Poggio

We had previously shown that regularization principles lead to approximation schemes that are equivalent to networks with one layer of hidden units, called regularization networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known radial basis functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends radial basis functions (RBF) to hyper basis functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, some forms of projection pursuit regression, and several types of neural networks. We propose to use the term generalized regularization networks for this broad class of approximation schemes that follow from an extension of regularization. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In summary, different multilayer networks with one hidden layer, which we collectively call generalized regularization networks, correspond to different classes of priors and associated smoothness functionals in a classical regularization principle. Three broad classes are (1) radial basis functions that can be generalized to hyper basis functions, (2) some tensor product splines, and (3) additive splines that can be generalized to schemes of the type of ridge approximation, hinge functions, and several perceptron-like neural networks with one hidden layer.


2008 ◽  
Vol 41 (2) ◽  
pp. 7463-7467
Author(s):  
Ali S. Saad Azhar ◽  
Muhammad Shafiq ◽  
Jamil M. Bakhashwain ◽  
Fouad M. AL-Sunni

2002 ◽  
Vol 14 (8) ◽  
pp. 1979-2002 ◽  
Author(s):  
Katsuyuki Hagiwara

In considering a statistical model selection of neural networks and radial basis functions under an overrealizable case, the problem of unidentifiability emerges. Because the model selection criterion is an unbiased estimator of the generalization error based on the training error, this article analyzes the expected training error and the expected generalization error of neural networks and radial basis functions in overrealizable cases and clarifies the difference from regular models, for which identifiability holds. As a special case of an overrealizable scenario, we assumed a gaussian noise sequence as training data. In the least-squares estimation under this assumption, we first formulated the problem, in which the calculation of the expected errors of unidentifiable networks is reduced to the calculation of the expectation of the supremum of thex2 process. Under this formulation, we gave an upper bound of the expected training error and a lower bound of the expected generalization error, where the generalization is measured at a set of training inputs. Furthermore, we gave stochastic bounds on the training error and the generalization error. The obtained upper bound of the expected training error is smaller than in regular models, and the lower bound of the expected generalization error is larger than in regular models. The result tells us that the degree of overfitting in neural networks and radial basis functions is higher than in regular models. Correspondingly, it also tells us that the generalization capability is worse than in the case of regular models. The article may be enough to show a difference between neural networks and regular models in the context of the least-squares estimation in a simple situation. This is a first step in constructing a model selection criterion in an overrealizable case. Further important problems in this direction are also included in this article.


2021 ◽  
Vol 11 (23) ◽  
pp. 11185
Author(s):  
Zhi-Peng Jiang ◽  
Yi-Yang Liu ◽  
Zhen-En Shao ◽  
Ko-Wei Huang

Image recognition has been applied to many fields, but it is relatively rarely applied to medical images. Recent significant deep learning progress for image recognition has raised strong research interest in medical image recognition. First of all, we found the prediction result using the VGG16 model on failed pneumonia X-ray images. Thus, this paper proposes IVGG13 (Improved Visual Geometry Group-13), a modified VGG16 model for classification pneumonia X-rays images. Open-source thoracic X-ray images acquired from the Kaggle platform were employed for pneumonia recognition, but only a few data were obtained, and datasets were unbalanced after classification, either of which can result in extremely poor recognition from trained neural network models. Therefore, we applied augmentation pre-processing to compensate for low data volume and poorly balanced datasets. The original datasets without data augmentation were trained using the proposed and some well-known convolutional neural networks, such as LeNet AlexNet, GoogLeNet and VGG16. In the experimental results, the recognition rates and other evaluation criteria, such as precision, recall and f-measure, were evaluated for each model. This process was repeated for augmented and balanced datasets, with greatly improved metrics such as precision, recall and F1-measure. The proposed IVGG13 model produced superior outcomes with the F1-measure compared with the current best practice convolutional neural networks for medical image recognition, confirming data augmentation effectively improved model accuracy.


Sign in / Sign up

Export Citation Format

Share Document