A proposed circle/circular arc detection method using the modified randomized hough transform

2006 ◽  
Vol 29 (3) ◽  
pp. 533-538 ◽  
Author(s):  
Shih‐Hsuan Chiu ◽  
Jiun‐Jian Liaw
Author(s):  
SHIH-HSUAN CHIU ◽  
JIUN-JIAN LIAW ◽  
KUO-HUNG LIN

The main drawbacks of the Hough transform (HT) are the heavy requirement of computation and storage. To improve the drawbacks of the HT, the randomized Hough transform (RHT) was proposed. But the RHT is not suitable for detecting the pattern with the complex image because the probability is too low. In this paper, we propose a fast randomized Hough transform for circle/circular arc detection. We pick one point at random to be the seed point. Then, we propose a checking rule to confirm if the seed point is on the true circle. Compared with the previous techniques, the proposed method requires less computational time and is more suitable for complex images. In the experiments, synthetic and real images are used to show the effect of the proposed method.


2014 ◽  
Vol 519-520 ◽  
pp. 1040-1045
Author(s):  
Ling Fan

This paper makes some improvements on Roberts representation for straight line in space and proposes a coarse-to-fine three-dimensional (3D) Randomized Hough Transform (RHT) for the detection of dim targets. Using range, bearing and elevation information of the received echoes, 3D RHT can detect constant velocity target in space. In addition, this paper applies a coarse-to-fine strategy to the 3D RHT, which aims to solve both the computational and memory complexity problems. The validity of the coarse-to-fine 3D RHT is verified by simulations. In comparison with the 2D case, which only uses the range-bearing information, the coarse-to-fine 3D RHT has a better practical value in dim target detection.


2013 ◽  
Vol 378 ◽  
pp. 478-482
Author(s):  
Yoshihiro Mitani ◽  
Toshitaka Oki

The microbubble has been widely used and shown to be effective in various fields. Therefore, there is an importance of measuring accurately its size by image processing techniques. In this paper, we propose a detection method of microbubbles by the approach based on the Hough transform. Experimental results show only 4.49% of the average error rate of the undetected microbubbles and incorrectly detected ones. This low percentage of the error rate shows the effectiveness of the proposed method.


2019 ◽  
Vol 52 (3-4) ◽  
pp. 252-261 ◽  
Author(s):  
Xiaohua Cao ◽  
Daofan Liu ◽  
Xiaoyu Ren

Auto guide vehicle’s position deviation always appears in its walking process. Current edge approaches applied in the visual navigation field are difficult to meet the high-level requirements of complex environment in factories since they are easy to be affected by noise, which results in low measurement accuracy and unsteadiness. In order to avoid the defects of edge detection algorithm, an improved detection method based on image thinning and Hough transform is proposed to solve the problem of auto guide vehicle’s walking deviation. First, the image of lane line is preprocessed with gray processing, threshold segmentation, and mathematical morphology, and then, the refinement algorithm is employed to obtain the skeleton of the lane line, combined with Hough detection and line fitting, the equation of the guide line is generated, and finally, the value of auto guide vehicle’s walking deviation can be calculated. The experimental results show that the methodology we proposed can deal with non-ideal factors of the actual environment such as bright area, path breaks, and clutters on road, and extract the parameters of the guide line effectively, after which the value of auto guide vehicle’s walking deviation is obtained. This method is proved to be feasible for auto guide vehicle in indoor environment for visual navigation.


2021 ◽  
Author(s):  
Shynimol E. Thayilchira

In this project, an analysis of the faster detection of shapes using Randomized Hough Transform (RHT) was investigated. Since reduced computational complexity and time efficiency are the major concerns for complex image analysis, the focus of the research was to investigate RHT for these specific tasks. Also, a detailed analysis of probability theory associated with RHT theory was investigated as well. Thus effectiveness of RHT was proven mathematically in this project. In this project, RHT technique combined with Generalized Hough Transform (GHT) using Newton's curve fitting technique was proposed for faster detection of shapes in the Hough Domain. Finally, the image under question was enhanced using Minimum Cross-Entropy Optimization to further enhance the image and then RGHT process was carried out. This helped the RGHT process to obtain the required time efficiency.


Sign in / Sign up

Export Citation Format

Share Document